projet3_temperature/lib/MeasureUnit/MeasureUnit.cpp

122 lines
3.5 KiB
C++

#include "MeasureUnit.h"
MeasureUnit::MeasureUnit(uint8_t *analogInput,
uint16_t thermistorCount,
uint64_t precResistor,
ThermistorSetting thermistorSetting,
AdcSetting adcSetting) : _analogInput(analogInput), _thermistorCount(thermistorCount), _precResistor(precResistor), _thermistorSetting(thermistorSetting), _adcSetting(adcSetting), _globalOffset(0), _error(OK)
{
//Allocation dynamique des différent tableaux
_temperatures = (double*) calloc(_thermistorCount, sizeof(double));
_rOffsetMap = (double*) calloc(_thermistorCount, sizeof(double));
_resistanceMap = (double*) calloc(_thermistorCount, sizeof(double));
if(_temperatures == NULL || _rOffsetMap == NULL || _resistanceMap == NULL)
{
_error = MALLOC_ERR;
_temperatures != NULL ? free(_temperatures):(void)_temperatures;
_rOffsetMap != NULL ? free(_rOffsetMap):(void)_rOffsetMap;
_resistanceMap != NULL ? free(_resistanceMap):(void)_resistanceMap;
_temperatures = NULL;
_rOffsetMap = NULL;
_resistanceMap = NULL;
}
}
MeasureUnit::~MeasureUnit()
{
if(_error != MALLOC_ERR)
{
free(_temperatures);
free(_rOffsetMap);
free(_resistanceMap);
}
}
/**
* Methode permettant d'effectuer les mesures de température et de les récupérer
*/
double *MeasureUnit::getTemperatures()
{
double courant(0), deltaTension(0);
//1) Nous calculons le courant présent dans la branche grace à la résistance de précision
#ifdef DEBUG
Serial.println("-------------");
#endif
for(int i(0); i < _adcSetting.getMeasureIteration(); i++)
{
delay(_adcSetting.getDelayBetweenIteration());
int sample = analogRead(_analogInput[0]);
deltaTension += sample;
#ifdef DEBUG
Serial.print("Adc value : ");Serial.println(sample);
#endif
}
#ifdef DEBUG
Serial.println("-------------");
#endif
deltaTension /= _adcSetting.getMeasureIteration();
#ifdef DEBUG
Serial.print("Adc value average : ");Serial.println(deltaTension);
#endif
deltaTension *= _adcSetting.getQuantum();
#ifdef DEBUG
char buffer[10] = "";
sprintf(buffer,"%.8f", deltaTension);
Serial.print("R prec voltage : ");Serial.println(buffer);
#endif
courant = deltaTension / (double) _precResistor;
#ifdef DEBUG
sprintf(buffer,"%.8f", courant);
Serial.print("R prec current : ");Serial.println(buffer);
#endif
//2) Nous calculons le delta de tensions pour chaque thermistances
for(int i(1); i < _thermistorCount; i++)
{
for(int j(0); j < _adcSetting.getMeasureIteration(); j++)
{
delay(_adcSetting.getDelayBetweenIteration());
int sample = analogRead(_analogInput[i]);
_resistanceMap[i-1] += sample;
}
_resistanceMap[i-1] /= _adcSetting.getMeasureIteration();
if(i == 1)
_resistanceMap[i-1] -= deltaTension;
else
_resistanceMap[i-1] -= _resistanceMap[i-2];
}
//Pour la dernière valeur:
_resistanceMap[7] = _adcSetting.getVref() - _resistanceMap[6];
for(int i(0); i < _thermistorCount; i++)
{
//3) Nous en déduisons la résistance
_resistanceMap[i] /= courant;
//4) Nous en déduisons la temperature
_temperatures[i] = (((25.0+273.15) * (double)_thermistorSetting.getBeta()) / ((double)_thermistorSetting.getBeta() + (25.0+273.15)*log(_resistanceMap[i]/(double) _thermistorSetting.getRat25()))) - 273.15;
}
return _temperatures;
}
void MeasureUnit::setGlobalTempOffset(double offset)
{
_globalOffset = offset;
}
double MeasureUnit::getGlobalTempOffset()
{
return _globalOffset;
}