
IBM Long Range Signaling and Control

IBM LoRaWAN in C (LMiC)

Version 1.5

8 - May - 2015

2 IBM LoRaWAN in C (LMiC) Technical Specification

LMiC Product Information

LMiC is developed and marketed by the IBM Zurich Research Laboratory (IBM Research GmbH),

8803 Rüschlikon, Switzerland. For additional information please contact: lrsc@zurich.ibm.com.

© 2014-2015 IBM Corporation

Copyright International Business Machines Corporation, 2014-2015. All Rights Reserved.

The following are trademarks or registered trademarks of International Business Machines Corporation

in the United States, or other countries, or both: IBM, the IBM Logo, Ready for IBM Technology.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The information

contained in this document does not affect or change IBM product specifications or warranties.

Nothing in this document shall operate as an express or implied license or indemnity under the

intellectual property rights of IBM or third parties. All information contained in this document was

obtained in specific environments, and is presented as an illustration. The results obtained in other

operating environments may vary. THE INFORMATION CONTAINED IN THIS DOCUMENT IS

PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or

indirectly from any use of the information contained in this document.

mailto:lrsc@zurich.ibm.com

4 IBM LoRaWAN in C (LMiC) Technical Specification

Table of Contents

1. Introduction ... 5

2. Programming Model and API ... 6

2.1 Programming Model .. 6
2.2 Run-time Functions ... 7
2.3 Application callbacks ... 7
2.4 The LMIC Struct .. 9
2.5 API Functions .. 10

3. Hardware Abstraction Layer .. 13

3.1 HAL Interface .. 13
3.2 HAL Reference Implementation for STM32/Cortex-M3 .. 14

4. Examples ... 16

4.1 Example 1: hello .. 17
4.2 Example 2: join .. 17
4.3 Example 3: transmit .. 18
4.4 Example 4: periodic ... 19
4.5 Example 5: interrupt .. 20
4.6 Example 6: beacon ... 20
4.7 Example 7: ping .. 21
4.8 Debug library ... 22

5. Release History ... 24

Introduction

IBM LoRaWAN in C (LMiC) Technical Specification 5

1. Introduction

The IBM LoRaWAN C-library (LMiC) is a portable implementation of the LoRa™ MAC specification for

the C programming language. It supports both the EU-868 and the US-915 variants of the specification

and it can handle class A and class B devices. The library takes care of all logical MAC states and

timing constraints and drives the SEMTECH SX1272 radio. This way, applications are free to perform

other tasks and the protocol compliance is guaranteed by the library. In order to ensure compliance

with the specification and associated regulations, the state engine has been tested and verified using a

logic simulation environment. The library has been carefully engineered to precisely satisfy the timing

constraints of the MAC protocol and to even consider possible clock drifts in the timing computations.

Applications can access and configure all functionality via a simple event-based programming model

and do not have to deal with platform-specific details like interrupt handlers. By using a thin hardware

abstraction layer (HAL), the library can be easily ported to new hardware platforms. For the

STM32/Cortex-M3 platform, a reference implementation of the HAL is supplied and the overall code

footprint of all components on this platform is less than 20K.

In addition to the provided LMiC library a real-world application also needs drivers for the sensors or

other hardware it desires to control. These application drivers are outside the scope of this document

and their code will not be provided by IBM.

Figure 1. Application device components

High-level view of all application device components. On top of the STM32 MCU with the connected
SX1272 radio and other sensor hardware runs the LMiC library and the application code.

LMiC Library

SX1272 LoRa Radio Sensor Hardware

STM32 MCU

Application Code

Application Drivers

(Sensors, etc.)

Hardware Abstraction Layer

MAC State Engine

Run-time Environment

LMiC Library. Version 1.5.

6 IBM LoRaWAN in C (LMiC) Technical Specification

2. Programming Model and API

The LMiC library can be accessed via a set of API functions, run-time functions, callback functions,

and a global LMIC data structure. The interface is defined in a single header file “lmic.h” which all

applications should include.

#include “lmic.h”

To identify the version of the LMiC library two constants are defined in this header file.

#define LMIC_VERSION_MAJOR 1

#define LMIC_VERSION_MINOR 5

2.1 Programming Model

The LMiC library offers a simple event-based programming model where all protocol events are

dispatched to the application’s onEvent() callback function (see 2.3.4). In order to free the application

of details like timings or interrupts, the library has a built-in run-time environment to take care of timer

queues and job management.

2.1.1 Application jobs

In this model all application code is run in so-called jobs which are executed on the main thread by the

run-time scheduler function os_runloop() (see 2.2.4). These application jobs are coded as normal C

functions and can be managed using the run-time functions described in section 2.2. For the job

management an additional per job control struct osjob_t is required which identifies the job and

stores context information. Jobs must not be long-running in order to ensure seamless operation!

They should only update state and schedule actions, which will trigger new job or event callbacks.

2.1.2 Main event loop

All an application has to do is to initialize the run-time environment using the os_init() function and

to run the job scheduler function os_runloop(), which does not return. In order to bootstrap protocol

actions and generate events, an initial job needs to be set up. Therefore, a startup job is scheduled

using the os_setCallback() function.

void main () {

 osjob_t initjob;

 // initialize run-time env

 os_init();

 // setup initial job

 os_setCallback(&initjob, initfunc);

 // execute scheduled jobs and events

 os_runloop();

 // (not reached)

}

The startup code shown in the initfunc() function below initializes the MAC and starts joining the

network.

Programming Model and API

IBM LoRaWAN in C (LMiC) Technical Specification 7

// initial job

static void initfunc (osjob_t* j) {

 // reset MAC state

 LMIC_reset();

 // start joining

 LMIC_startJoining();

 // init done - onEvent() callback will be invoked...

}

The initfunc() function will return immediately, and the onEvent() callback function will be invoked

by the scheduler later on for the events EV_JOINING, EV_JOINED or EV_JOIN_FAILED.

2.2 Run-time Functions

The run-time functions menitioned before are used to control the run-time environment. This includes

initialization, scheduling and execution of the run-time jobs.

2.2.1 void os_setCallback (osjob_t* job, osjobcb_t cb)

Prepare an immediately runnable job. This function can be called at any time, including from interrupt

handler contexts (e.g. if a new sensor value has become available).

2.2.2 void os_setTimedCallback (osjob_t* job, ostime_t time, osjobcb_t cb)

Schedule a timed job to run at the given timestamp (absolute system time). This function can be called

at any time, including from interrupt handler contexts.

2.2.3 void os_clearCallback (osjob_t* job)

Cancel a run-time job. A previously scheduled run-time job is removed from timer and run queues. The

job is identified by the address of the job struct. The function has no effect if the specified job is not yet

scheduled.

2.2.4 void os_runloop ()

Execute run-time jobs from the timer and from the run queues. This function is the main action

dispatcher. It does not return and must be run on the main thread.

2.2.5 ostime_t os_getTime ()

Query absolute system time (in ticks).

2.3 Application callbacks

The LMiC library requires the application to implement a few callback functions. These functions will

be called by the state engine to query application-specific information and to deliver state events to the

application.

LMiC Library. Version 1.5.

8 IBM LoRaWAN in C (LMiC) Technical Specification

2.3.1 void os_getDevEui (u1_t* buf)

The implementation of this callback function has to provide the device EUI and copy it to the given

buffer. The device EUI is 8 bytes in length and is stored in little-endian format, that is, least-significant-

byte-first (LSBF).

2.3.2 void os_getDevKey (u1_t* buf)

The implementation of this callback function has to provide the device-specific cryptographic

application key and copy it to the given buffer. The device-specific application key is a 128-bit AES key

(16 bytes in length).

2.3.3 void os_getArtEui (u1_t* buf)

The implementation of this callback function has to provide the application EUI and copy it to the given

buffer. The application EUI is 8 bytes in length and is stored in little-endian format, that is, least-

significant-byte-first (LSBF).

2.3.4 void onEvent (ev_t ev)

The implementation of this callback function may react on certain events and trigger new actions

based on the event and the LMIC state. Typically, an implementation processes the events it is

interested in and schedules further protocol actions using the LMIC API. The following events will be

reported:

 EV_JOINING

The node has started joining the network.

 EV_JOINED

The node has successfully joined the network and is now ready for data exchanges.

 EV_JOIN_FAILED

The node could not join the network (after retrying).

 EV_REJOIN_FAILED

The node did not join a new network but is still connected to the old network.

 EV_TXCOMPLETE

The data prepared via LMIC_setTxData() has been sent, and eventually downstream data

has been received in return. If confirmation was requested, the acknowledgement has been

received.

 EV_RXCOMPLETE

Downstream data has been received.

 EV_SCAN_TIMEOUT

After a call to LMIC_enableTracking() no beacon was received within the beacon interval.

Tracking needs to be restarted.

 EV_BEACON_FOUND

After a call to LMIC_enableTracking() the first beacon has been received within the beacon

interval.

 EV_BEACON_TRACKED

The next beacon has been received at the expected time.

 EV_BEACON_MISSED

No beacon was received at the expected time.

Programming Model and API

IBM LoRaWAN in C (LMiC) Technical Specification 9

 EV_LOST_TSYNC

Beacon was missed repeatedly and time synchronization has been lost. Tracking or pinging

needs to be restarted.

 EV_RESET

Session reset due to rollover of sequence counters. Network will be rejoined automatically to

acquire new session.

 EV_LINK_DEAD

No confirmation has been received from the network server for an extended period of time.

Transmissions are still possible but their reception is uncertain.

Details for specific events can be obtained from the global LMIC structure decribed in the next section.

2.4 The LMIC Struct

Instead of passing numerous parameters back and forth between API and callback functions,

information about the protocol state can be accessed via a global LMIC structure as shown below. All

fields besides the ones explicitly mentioned below are read-only and should not be modified.

struct lmic_t {

 u1_t frame[MAX_LEN_FRAME];

 u1_t dataLen; // 0 no data or zero length data, >0 byte count of data

 u1_t dataBeg; // 0 or start of data (dataBeg-1 is port)

 u1_t txCnt;

 u1_t txrxFlags; // transaction flags (TX-RX combo)

 u1_t pendTxPort;

 u1_t pendTxConf; // confirmed data

 u1_t pendTxLen;

 u1_t pendTxData[MAX_LEN_PAYLOAD];

 u1_t bcnChnl;

 u1_t bcnRxsyms;

 ostime_t bcnRxtime;

 bcninfo_t bcninfo; // Last received beacon info

 …

 …

};

This document does not describe the full struct in detail since most of the fields of the LMIC struct are

used internally only. The most important fields to examine on reception (event EV_RXCOMPLETE or

EV_TXCOMPLETE) are the txrxFlags for status information and frame[] and dataLen / dataBeg for

the received application payload data. For data transmission the most important fields are

pendTxData[], pendTxLen, pendTxPort and pendTxConf, which are used as input to the

LMIC_setTxData() API function (see 2.5.11).

For the EV_RXCOMPLETE and EV_TXCOMPLETE events, the txrxFlags field sould be evaluated and

the following flags are defined:

 TXRX_ACK: confirmed UP frame was acked (mutually exclusive with TXRX_NACK)

 TXRX_NACK: confirmed UP frame was not acked (mutually exclusive with TXRX_ACK)

 TXRX_PORT: a port field is contained in the received frame

LMiC Library. Version 1.5.

10 IBM LoRaWAN in C (LMiC) Technical Specification

 TXRX_DNW1: received in first DOWN slot (mutually exclusive with TXRX_DNW2)

 TXRX_DNW2: received in second DOWN slot (mutually exclusive with TXRX_DNW1)

 TXRX_PING: received in a scheduled RX slot

For the EV_TXCOMPLETE event the fields have the following values:

Received frame
LMIC.txrxFlags

LMIC.dataLen LMIC.dataBeg
ACK NACK PORT DNW1 DNW2 PING

nothing 0 0 0 0 0 0 0 0

empty frame x x 0 x x 0 0 x

port only x x 1 x x 0 0 x

port+payload x x 1 x x 0 x x

For the EV_RXCOMPLETE event the fields have the following values:

Received frame
LMIC.txrxFlags

LMIC.dataLen LMIC.dataBeg
ACK NACK PORT DNW1 DNW2 PING

empty frame 0 0 0 0 0 1 0 x

port only 0 0 1 0 0 1 0 x

port+payload 0 0 1 0 0 1 x x

2.5 API Functions

The LMiC library offers a set of API functions to control the MAC state and to trigger protocol actions.

2.5.1 void LMIC_reset ()

Reset the MAC state. Session and pending data transfers will be discarded.

2.5.2 bit_t LMIC_startJoining ()

Immediately start joining the network. Will be called implicitely by other API functions if no session has

been established yet. The events EV_JOINING and EV_JOINED or EV_JOIN_FAILED will be generated.

2.5.3 void LMIC_tryRejoin ()

Check if other networks are around which can be joined. The session to the current network is kept if

no new network is found. The events EV_JOINED or EV_REJOIN_FAILED will be generated.

2.5.4 void LMIC_setSession (u4_t netid, devaddr_t devaddr, u1_t* nwkKey, u1_t* artKey)

Set static session parameters. Instead of dynamically establishing a session by joining the network,

precomputed session parameters can be provided. To resume a session with precomputed

parameters, the frame sequence counters (LMIC.seqnoUp and LMIC.seqnoDn) must be restored to

their latest values.

2.5.5 bit_t LMIC_setupBand (u1_t bandidx, s1_t txpow, u2_t txcap)

Create new band with the specified transmit power and duty cycle (1/txcap) properties.

Programming Model and API

IBM LoRaWAN in C (LMiC) Technical Specification 11

2.5.6 bit_t LMIC_setupChannel (u1_t channel, u4_t freq, u2_t drmap, s1_t band)

Create new channel in the given band using the specified frequency and allowing the data rates

defined in the data rate bitmask (1 << DRx).

2.5.7 void LMIC_disableChannel (u1_t channel)

Disable specified channel.

2.5.8 void LMIC_setAdrMode (bit_t enabled)

Enable or disable data rate adaptation. Should be turned off if the device is mobile.

2.5.9 void LMIC_setLinkCheckMode (bit_t enabled)

Enable/disable link check validation. Link check mode is enabled by default and is used to periodically

verify network connectivity. Must be called only if a session is established.

2.5.10 void LMIC_setDrTxpow (dr_t dr, s1_t txpow)

Set data rate and transmit power. Should only be used if data rate adaptation is disabled.

2.5.11 void LMIC_setTxData ()

Prepare upstream data transmission at the next possible time. It is assumed, that pendTxData,

pendTxLen, pendTxPort and pendTxConf have already been set. Data of length LMIC.pendTxLen

from the array LMIC.pendTxData[] will be sent to port LMIC.pendTxPort. If LMIC.pendTxConf is

true, confirmation by the server will be requested. The event EV_TXCOMPLETE will be generated when

the transaction is complete, i.e. after the data has been sent and eventual down data or a requested

acknowledgement has been received.

2.5.12 int LMIC_setTxData2 (u1_t port, xref2u1_t data, u1_t dlen, u1_t confirmed)

Prepare upstream data transmission at the next possible time. Convenience function for

LMIC_setTxData(). If data is NULL, the data in LMIC.pendTxData[] will be used.

2.5.13 void LMIC_clrTxData ()

Remove data previously prepared for upstream transmission.

2.5.14 bit_t LMIC_enableTracking (u1_t tryBcnInfo)

Enable beacon tracking. A value of 0 for tryBcnInfo indicates to start scanning for the beacon

immediately. A non-zero value specifies the number of attempts to query the server for the exact

beacon arrival time. The query requests will be sent within the next upstream frames (no frame will be

generated). If no answer is received scanning will be started. The events EV_BEACON_FOUND or

EV_SCAN_TIMEOUT will be generated for the first beacon, and the events EV_BEACON_TRACKED,

EV_BEACON_MISSED or EV_LOST_TSYNC will be generated for subsequent beacons.

2.5.15 void LMIC_disableTracking ()

Disable beacon tracking. The beacon will be no longer tracked and, therefore, also pinging will be

disabled.

LMiC Library. Version 1.5.

12 IBM LoRaWAN in C (LMiC) Technical Specification

2.5.16 void LMIC_setPingable (u1_t intvExp)

Enable pinging and set the downstream listen interval. Pinging will be enabled with the next upstream

frame (no frame will be generated). The listen interval is 2^intvExp seconds, valid values for intvExp

are 0-7. This API function requires a valid session established with the network server either via

LMIC_startJoining() or LMIC_setSession() functions (see sections 2.5.2 and 2.5.4). If beacon

tracking is not yet enabled, scanning will be started immediately. In order to avoid scanning, the

beacon can be located more efficiently by a preceding call to LMIC_enableTracking() with a non-

zero parameter. Additionally to the events mentioned for LMIC_enableTracking(), the event

EV_RXCOMPLETE will be generated whenever downstream data has been received in a ping slot.

2.5.17 void LMIC_stopPingable ()

Stop listening for downstream data. Periodical reception is disabled, but beacons will still be tracked.

In order to stop tracking, the beacon a call to LMIC_disableTracking() is required.

2.5.18 void LMIC_sendAlive ()

Send one empty upstream MAC frame as soon as possible. Might be used to signal liveness or to

transport pending MAC options, and to open a receive window.

2.5.19 void LMIC_shutdown ()

Stop all MAC activity. Subsequently, the MAC needs to be reset via a call to LMIC_reset() and new

protocol actions need to be initiated.

Hardware Abstraction Layer

IBM LoRaWAN in C (LMiC) Technical Specification 13

3. Hardware Abstraction Layer

The LMiC library is separated into a large portion of portable code and a small platform-specific part.

By implementing the functions of this hardware abstraction layer with the specified semantics, the

library can be easily ported to new hardware platforms.

3.1 HAL Interface

The following groups of hardware components must be supported:

 Four digital I/O lines are needed in output mode to drive the radio’s antenna switch (RX and

TX), the SPI chip select (NSS), and the reset line (RST).

 Three digital I/O lines are needed in input mode to sense the radio’s transmitter and receiver

states (DIO0, DIO1 and DIO2).

 A SPI unit is needed to read and write the radio’s registers.

 A timer unit is needed to precisely record events and to schedule new protocol actions.

 An interrupt controller is needed to forward interrupts generated by the digital input lines.

This section describes the function interface required to access these hardware components:

3.1.1 void hal_init ()

Initialize the hardware abstraction layer. Configure all components (IO, SPI, TIMER, IRQ) for further

use with the hal_xxx() functions.

3.1.2 void hal_failed ()

Perform “fatal failure” action. This function will be called by code assertions on fatal conditions.

Possible actions could be HALT or reboot.

3.1.3 void hal_pin_rxtx (u1_t val)

Drive the digital output pins RX and TX (0=receive, 1=transmit).

3.1.4 void hal_pin_nss (u1_t val)

Drive the digital output pin NSS (0=low/selected, 1=high/deselected).

3.1.5 void hal_pin_rst (u1_t val)

Control the radio RST pin (0=low, 1=high, 2=floating)

3.1.6 void radio_irq_handler (u1_t dio)

The three input lines DIO0, DIO1 and DIO2 must be configured to trigger an interrupt on the rising

edge and the corresponding interrupt handlers must invoke the function radio_irq_handler() and

pass the line which generated the interrupt as argument (0, 1, 2).

LMiC Library. Version 1.5.

14 IBM LoRaWAN in C (LMiC) Technical Specification

3.1.7 u1_t hal_spi (u1_t outval)

Perform 8-bit SPI transaction. Write given byte outval to radio, read byte from radio and return value.

3.1.8 u4_t hal_ticks ()

Return 32-bit system time in ticks.

3.1.9 void hal_waitUntil (u4_t time)

Busy-wait until specified timestamp (in ticks) is reached.

3.1.10 u1_t hal_checkTimer (u4_t targettime)

Check and rewind timer for given targettime. Return 1 if targettime is close (not worthwhile

programming the timer). Otherwise rewind timer for exact targettime or for full timer period and

return 0. The only action required when targettime is reached is that the CPU wakes up from

possible sleep states.

3.1.11 void hal_disableIRQs ()

Disable all CPU interrupts. Might be invoked nested. But will always be followed by matching call to

hal_enableIRQs().

3.1.12 void hal_enableIRQs ()

Enable CPU interrupts. When invoked nested, only the outmost invocation actually must enable the

interrupts.

3.1.13 void hal_sleep ()

Sleep until interrupt occurs. Preferably system components can be put in low-power mode before

sleep, and be re-initialized after sleep.

3.2 HAL Reference Implementation for STM32/Cortex-M3

The source code of the LMiC library includes a reference implementation of the HAL for the

STM32/Cortex-M3 platform. This implementation demonstrates the required semantics of the HAL

function interface. For brevity’s sake it is kept as simple as possible and it is not optimized (e.g. for

power consumption). We will describe here the hardware resources used by this implementation.

Applications using the library must be aware of the use of these resources and must not interfere with

them! Either applications have to use different resources availbale on the platform, or they have to

modify the HAL implementation and multiplex access to the required resources!

3.2.1 Output I/O Lines

The following generic output lines are used to control the radio.

Hardware Abstraction Layer

IBM LoRaWAN in C (LMiC) Technical Specification 15

Function GPIO

NSS PB 0

TX PA 4

RX PC 13

RST PA 2

3.2.2 Input I/O Lines

The following generic input lines are used to track the transmitter and receiver state. These lines are

programmed to generate interrupts on the rising edge (see section 3.1.6 and 3.2.5).

Function GPIO

DIO 0 PB 1

DIO 1 PB 10

DIO 2 PB 11

3.2.3 SPI

The SPI1 peripheral is connected to the radio as shown in the table below.

Function GPIO

SCK PA 5

MISO PA 6

MOSI PA 7

3.2.4 Timer

The TIMER 9 peripheral is used to provide 32kHz clock ticks and to generate comparator interrupts for

scheduled protocol actions.

3.2.5 Interupts

One EXTI interrupt handler is used to handle all external I/O line interrupt groups (0, 1, 2, 3, 4, 5-9, 10-

15). The EXTI handler checks the source of the interrupt and eventually invokes the

radio_irq_handler().

The handler for TIMER 9 interrupts updates the system clock ticks on roll-over of the counter. No

specific action has to be performed by the handler when the interrupt is triggered by the comparator. It

is sufficient that the CPU wakes from sleep and the run-time environment of LMiC can check for

pending actions.

LMiC Library. Version 1.5.

16 IBM LoRaWAN in C (LMiC) Technical Specification

4. Examples

A set of examples is provided to demonstrate how typical node applications can be implemented with

only a few lines of code using the LMiC library. The shipped examples are ready to run on the demo

board of the IMST / WiMOD LoRa™ Radio Starter Kit.

The examples can be built using different compiler toolchains and makefiles are provided for IAR, Keil

and GCC. Additionally project files for the integrated development environments IAR Workbench and

Keil µVision are provided in the examples directory of the ZIP file.

Note: all projects should have the following preprocessor defines set in the project options:

CFG_eu868, CFG_wimod_board, CFG_sx1272_radio

In addition to driving the radio using the LMiC APIs, the examples are written to give local feedback via

a LED and a serial console using the debug library described in section 4.8. The demo board will make

the serial console available as “USB Serial Port” on the connected PC and the output of the debug

functions can be easily viewed with the terminal application of your choice. Communication

parameters are 115200bps 8/N/1.

Figure 2. IMST / WiMOD LoRa™ Radio Starter Kit

The examples have been tested on IMST WiMOD SK-iM880A.

For brevity’s sake only the relevant portions of the code are included in the snippets shown for each

example in this section. In most cases, this is the application’s onEvent() callback function plus some

utility glue contained in the example’s main.c file.

Examples

IBM LoRaWAN in C (LMiC) Technical Specification 17

4.1 Example 1: hello

The first example (hello) can be used to verify that your development environment is up and running

and all components are well connected. The example doesn’t use the radio, it only uses the run-time

functions and the debug library to periodically log a counter value to the serial console and to blink the

LED.

// counter

static int cnt = 0;

// log text to USART and toggle LED

static void initfunc (osjob_t* job) {

 // say hello

 debug_str("Hello World!\r\n");

 // log counter

 debug_val("cnt = ", cnt);

 // toggle LED

 debug_led(++cnt & 1);

 // reschedule job every second

 os_setTimedCallback(job, os_getTime()+sec2osticks(1), initfunc);

}

If everything is set up correctly and the program is executed you should see the LED blink in a one

second interval and see the following output on the terminal:

============== DEBUG STARTED ==============

Hello World!

cnt = 00000000

Hello World!

cnt = 00000001

Hello World!

cnt = 00000002

.

4.2 Example 2: join

The next example (join) can be used to verify that the radio is working and that the node settings are

correct and match your network infrastructure. For the example to work, the application callbacks

os_getArtEui(), os_getDevEui() and os_getDevKey() have to return correct values for the

application router id, the device id, and the device key!

static osjob_t blinkjob;

static u1_t ledstate = 0;

static void blinkfunc (osjob_t* j) {

 // toggle LED

 ledstate = !ledstate;

 debug_led(ledstate);

 // reschedule blink job

 os_setTimedCallback(j, os_getTime()+ms2osticks(100), blinkfunc);

}

void onEvent (ev_t ev) {

LMiC Library. Version 1.5.

18 IBM LoRaWAN in C (LMiC) Technical Specification

 debug_event(ev);

 switch(ev) {

 // starting to join network

 case EV_JOINING:

 // start blinking

 blinkfunc(&blinkjob);

 break;

 // network joined, session established

 case EV_JOINED:

 // cancel blink job

 os_clearCallback(&blinkjob);

 // switch on LED

 debug_led(1);

 // (don't schedule any new actions)

 break;

 }

}

On execution the LED should start blinking fast, and after about five seconds (if the network can be

successfully joined), it should become ON permanently. The output on the terminal should be JOINING

at the beginning, and after about five seconds JOINED.

============== DEBUG STARTED ==============

JOINING

JOINED

4.3 Example 3: transmit

After joining the network, the transmit example will start sending upstream frames containing one byte

with the last known signal-to-noise ratio. Once a transmission is complete, a new transmission will be

scheduled immediately, and hence the frames will be sent with the maximum rate permitted by the

duty cycle. If downstream data has been received in the receive slot after the transmission, it will be

logged to the console.

void onEvent (ev_t ev) {

 debug_event(ev);

 switch(ev) {

 // network joined, session established

 case EV_JOINED:

 debug_val("netid = ", LMIC.netid);

 goto tx;

 // scheduled data sent (optionally data received)

 case EV_TXCOMPLETE:

 if(LMIC.dataLen) { // data received in rx slot after tx

 debug_buf(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);

 }

 tx:

 // immediately prepare next transmission

 LMIC.frame[0] = LMIC.snr;

Examples

IBM LoRaWAN in C (LMiC) Technical Specification 19

 // schedule transmission (port 1, datalen 1, no ack requested)

 LMIC_setTxData2(1, LMIC.frame, 1, 0);

 // (will be sent as soon as duty cycle permits)

 break;

 }

}

The upstream frames should be delivered to the application router and the following output should be

seen on the node’s console:

============== DEBUG STARTED ==============

JOINING

JOINED

netid = 00000001

TXCOMPLETE

TXCOMPLETE

TXCOMPLETE

4.4 Example 4: periodic

The next example (periodic) will periodically report a sensor value to the network. After joining, a job is

run which reads the sensor, prepares an upstream transmission with the sensor’s value, and

reschedules the job for repeated execution in 60 seconds. To implement the sensor, this example

uses platform-specific functions initsensor() and readsensor() contained in the file sensor.c.

The sample sensor simply reads the position of the “DIP switch 1” on the demo board (PB 12) as 1-bit

value.

static osjob_t reportjob;

// report sensor value every minute

static void reportfunc (osjob_t* j) {

 // read sensor

 u2_t val = readsensor();

 debug_val("val = ", val);

 // prepare and schedule data for transmission

 LMIC.frame[0] = val << 8;

 LMIC.frame[1] = val;

 LMIC_setTxData2(1, LMIC.frame, 2, 0); // (port 1, 2 bytes, unconfirmed)

 // reschedule job in 60 seconds

 os_setTimedCallback(j, os_getTime()+sec2osticks(60), reportfunc);

}

void onEvent (ev_t ev) {

 debug_event(ev);

 switch(ev) {

 // network joined, session established

 case EV_JOINED:

 // switch on LED

 debug_led(1);

 // kick-off periodic sensor job

 reportfunc(&reportjob);

 break;

LMiC Library. Version 1.5.

20 IBM LoRaWAN in C (LMiC) Technical Specification

 }

}

Depending on the position of DIP switch 1, this example should generate output similar to this:

============== DEBUG STARTED ==============

JOINING

JOINED

val = 00000001

TXCOMPLETE

val = 00000001

TXCOMPLETE

val = 00000000

TXCOMPLETE

4.5 Example 5: interrupt

This example (interrupt) uses the same sensor as in the previous example but it doesn’t read the

sensor periodically. Instead, it is interrupt-driven and only sends the sensor value when the sensor has

changed. An application-defined interrupt handler has been added in the sensor.c file to run a

registered job callback when the interrupt is triggered:

// called by EXTI_IRQHandler

// (set preprocessor option CFG_EXTI_IRQ_HANDLER=sensorirq)

void sensorirq () {

 if((EXTI->PR & (1<<INP_PIN)) != 0) { // pending

 EXTI->PR = (1<<INP_PIN); // clear irq

 // run application callback function in 50ms (debounce)

 os_setTimedCallback(&irqjob, os_getTime()+ms2osticks(50), irqjob.func);

 }

}

4.6 Example 6: beacon

The following example (beacon) enables beacon tracking after joining the network. It drives the LED

depending on the TRACKED/MISSED events in each period. If the beacon is successfully tracked, the

GPS time contained in the beaon is logged to the console.

void onEvent (ev_t ev) {

 debug_event(ev);

 switch(ev) {

 // network joined, session established

 case EV_JOINED:

 // enable tracking mode, start scanning...

 LMIC_enableTracking(0);

 debug_str("SCANNING...\r\n");

 break;

 // beacon found by scanning

 case EV_BEACON_FOUND:

Examples

IBM LoRaWAN in C (LMiC) Technical Specification 21

 // switch LEN on

 debug_led(1);

 break;

 // beacon tracked at expected time

 case EV_BEACON_TRACKED:

 debug_val("GPS time = ", LMIC.bcninfo.time);

 // switch LEN on

 debug_led(1);

 break;

 // beacon missed at expected time

 case EV_BEACON_MISSED:

 // switch LEN off

 debug_led(0);

 break;

 }

}

Depending on the reception quality the console output should look similar to this:

============== DEBUG STARTED ==============

JOINING

JOINED

SCANNING...

BEACON_FOUND

BEACON_TRACKED

GPS time = 545CE201

BEACON_TRACKED

GPS time = 545CE281

BEACON_TRACKED

GPS time = 545CE301

4.7 Example 7: ping

The next example (ping) joins the network and repeatedly listens for downstream data. This is

achieved by enabling the beacon-based ping mode with an interval of two seconds. The call to

LMIC_setPingable() sets the ping mode locally and starts scanning for the beacon. Once the first

beacon has been found, an upstream frame needs to be sent (in this case an empty frame via

LMIC_sendAlive()) to transport the MAC options and to notify the server of the ping mode and

interval. Whenever the server has sent downstream data in one of the receive slots, the

EV_RXCOMPLETE event is triggered and the received data can be evaluated in the frame field of the

LMIC struct. The sample code logs the received data to the console and, in the special case when

exactly one byte is received, it drives the LED depending on the received value.

void onEvent (ev_t ev) {

 debug_event(ev);

 switch(ev) {

 // network joined, session established

 case EV_JOINED:

 // enable pinging mode, start scanning...

 // (set local ping interval configuration to 2^1 == 2 sec)

LMiC Library. Version 1.5.

22 IBM LoRaWAN in C (LMiC) Technical Specification

 LMIC_setPingable(1);

 debug_str("SCANNING...\r\n");

 break;

 // beacon found by scanning

 case EV_BEACON_FOUND:

 // send empty frame up to notify server of ping mode and interval!

 LMIC_sendAlive();

 break;

 // data frame received in ping slot

 case EV_RXCOMPLETE:

 // log frame data

 debug_buf(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);

 if(LMIC.dataLen == 1) {

 // set LED state if exactly one byte is received

 debug_led(LMIC.frame[LMIC.dataBeg] & 0x01);

 }

 break;

 }

}

4.8 Debug library

A small debug library is provided to enable local text output for the examples shown in this chapter.

This library is not required by LMiC but is useful for development and debugging. The library functions

offer simple serial console logging and access to a LED for diagnostic output. The debug library is

platform-specific and is implemented for STM32/Cortex-M3.

4.8.1 void debug_init ()

Initilize the peripherals required for the debug functions. USART1 and LED4 are used in the reference

implementation for STM32/Cortex-M3. Serial communication settings are 115200 8/N/1.

Function GPIO

USART 1 TX PA 9

LED 4 PA 8

4.8.2 void debug_led (u1_t val)

Drive LED (0=off, 1=on).

4.8.3 void debug_char (u1_t c)

Log single character to serial console.

4.8.4 void debug_hex (u1_t b)

Log byte value as two hexadecimal characters to serial console.

4.8.5 void debug_buf (const u1_t* buf, u2_t len)

Log multiple bytes as space-separated hex characters to serial console.

Examples

IBM LoRaWAN in C (LMiC) Technical Specification 23

4.8.6 void debug_uint (u4_t v)

Log 32-bit unsigned int value as eight hexadecimal digits to serial console.

4.8.7 void debug_str (const u1_t* str)

Log arbitrary nul-terminated string to serial console.

4.8.8 void debug_event (int ev)

Log name of event followed by “\r\n” to serial console.

4.8.9 void debug_val (const u1_t* label, u4_t val)

Log label string plus hexadecimal integer value followed by “\r\n” to serial console.

LMiC Library. Version 1.5.

24 IBM LoRaWAN in C (LMiC) Technical Specification

5. Release History

Version and date Description

V 1.0

November 2014

Initial version.

V 1.1

January 2015

Added API LMIC_setSession(). Minor internal fixes.

V 1.2

February 2015

Added APIs LMIC_setupBand(), LMIC_setupChannel(),

LMIC_disableChannel(), LMIC_setLinkCheckMode(). Minor internal fixes.

V 1.4

March 2015

Changed API: port indicator flag in LMIC.txrxFlags has been inverted

(now TXRX_PORT, previously TXRX_NOPORT). Internal bug fixes. Document

formatting.

V 1.5

May 2015

Bug fixes and documentation update.

