W801_SDK_dev_env/app/main.c

280 lines
8.1 KiB
C

/*****************************************************************************
*
* File Name : main.c
*
* Description: main
*
* Copyright (c) 2014 Winner Micro Electronic Design Co., Ltd.
* All rights reserved.
*
* Author : dave
*
* Date : 2014-6-14
*****************************************************************************/
#include <string.h>
#include "nano_shell_server_task.h"
#include "wm_include.h"
#include "wm_gpio_afsel.h"
#include "nano_shell.h"
#include "nano_shell_interface.h"
#include "lwip/netif.h"
#include "FreeRTOS.h"
#include "FreeRTOSConfig.h"
#include "app_common.h"
#include "NRF24L01P.h"
#include "app_utils.h"
tls_os_task_t nano_shell_task_handle = NULL;
tls_os_task_t nano_shell_server_task_handle = NULL;
extern s16 uart0_rx_callback(u16 len, void *user_data);
extern s16 uart1_rx_callback(u16 len, void *user_data);
#define NANO_SHELL_TASK_STK_SIZE 640
#define NANO_SHELL_SERVER_TASK_STK_SIZE 640
#define PWM_STATUS_LED WM_IO_PB_25
#define FADE_DOWN 1
#define FADE_UP -1
#define FADE_LOW_THRESHOLD 255
#define FADE_HIGH_THRESHOLD 200
#define PULSE_FAST 3
#define PULSE_SLOW 12
u8 pulse_rate = PULSE_SLOW;
bool nrf_irq = false;
void tls_netif_status_event_cb(u8 status)
{
struct netif *netif = tls_get_netif();
switch(status)
{
case NETIF_WIFI_JOIN_SUCCESS:
shell_printf("Evt : NETIF_WIFI_JOIN_SUCCESS"NEW_LINE);
break;
case NETIF_WIFI_JOIN_FAILED:
shell_printf("Evt : NETIF_WIFI_JOIN_FAILED"NEW_LINE);
break;
case NETIF_WIFI_DISCONNECTED:
shell_printf("Evt : NETIF_WIFI_DISCONNECTED"NEW_LINE);
pulse_rate = PULSE_SLOW;
break;
case NETIF_IP_NET_UP:
shell_printf("Evt : NETIF_IP_NET_UP"NEW_LINE"ip addr : %v"NEW_LINE"netmask : %v"NEW_LINE"gateway : %v"NEW_LINE, netif->ip_addr.addr,
netif->netmask.addr,
netif->gw.addr);
pulse_rate = PULSE_FAST;
break;
case NETIF_WIFI_SOFTAP_SUCCESS:
shell_printf("Evt : NETIF_WIFI_SOFTAP_SUCCESS"NEW_LINE);
break;
case NETIF_WIFI_SOFTAP_FAILED:
shell_printf("Evt : NETIF_WIFI_SOFTAP_FAILED"NEW_LINE);
break;
case NETIF_WIFI_SOFTAP_CLOSED:
shell_printf("Evt : NETIF_WIFI_SOFTAP_CLOSED"NEW_LINE);
pulse_rate = PULSE_SLOW;
break;
case NETIF_IP_NET2_UP:
shell_printf("Evt : NETIF_IP_NET2_UP"NEW_LINE"ip addr : %v"NEW_LINE"netmask : %v"NEW_LINE"gateway : %v"NEW_LINE, netif->next->ip_addr.addr,
netif->next->netmask.addr,
netif->next->gw.addr);
pulse_rate = PULSE_FAST;
break;
case NETIF_IPV6_NET_UP:
shell_printf("Evt : NETIF_IPV6_NET_UP"NEW_LINE);
break;
default:
shell_printf("Evt : UNKNOWN"NEW_LINE);
break;
}
}
void touchsensor_cb(u32 status)
{
shell_printf("Touch detected : status(%u)"NEW_LINE, status);
}
void tls_gpio_irq_cb(void *arg)
{
tls_clr_gpio_irq_status(WM_IO_PB_07);
}
void tls_gpio_pb11_irq_cb(void *arg)
{
tls_clr_gpio_irq_status(WM_IO_PB_11);
nrf_irq = true;
}
void delay_ms(uint32_t ms)
{
tls_os_time_delay(pdMS_TO_TICKS(ms));
}
uint32_t elapsed_ms(void)
{
return millis();
}
void CE_HIGH(void)
{
tls_gpio_write(WM_IO_PB_10, 1);
}
void CE_LOW(void)
{
tls_gpio_write(WM_IO_PB_10, 0);
}
void user_main(void *param)
{
u8 pwm_led_duty_cycle = 255;
s8 fading_direction = FADE_UP;
//We initialize input/output used by the app
wm_pwm3_config(PWM_STATUS_LED);
tls_pwm_init(3, 1000, 0, 0);
wm_uart1_tx_config(WM_IO_PB_06);
wm_uart1_rx_config(WM_IO_PB_07);
tls_gpio_irq_enable(WM_IO_PB_07, WM_GPIO_IRQ_TRIG_DOUBLE_EDGE);
tls_gpio_isr_register(WM_IO_PB_07, &(tls_gpio_irq_cb), NULL);
//We set a a pin as touch sensor :
wm_touch_sensor_config(WM_IO_PA_07);
tls_touchsensor_threshold_config(1, 120);
tls_touchsensor_init_config(1, 16, 16,1);
tls_touchsensor_irq_enable(1);
tls_touchsensor_irq_register(&(touchsensor_cb));
//We set the CE and IRQ pin for the NRF module
tls_gpio_cfg(WM_IO_PB_10, WM_GPIO_DIR_OUTPUT, WM_GPIO_ATTR_FLOATING); //CE pin
tls_gpio_cfg(WM_IO_PB_11, WM_GPIO_DIR_INPUT, WM_GPIO_ATTR_FLOATING); //IRQ pins
tls_gpio_irq_enable(WM_IO_PB_11, WM_GPIO_IRQ_TRIG_FALLING_EDGE);
tls_gpio_isr_register(WM_IO_PB_11, &(tls_gpio_pb11_irq_cb), NULL);
//We init the uart 1
tls_uart_port_init(TLS_UART_1, NULL, 0);
//We create and start a timer to run the millis counter
struct tls_timer_cfg tmr_millis = {0};
tmr_millis.arg = NULL;
tmr_millis.is_repeat = true;
tmr_millis.timeout = 1;
tmr_millis.unit = TLS_TIMER_UNIT_MS;
tmr_millis.callback = &(millis_run_cb);
u8 tmr_millis_id = tls_timer_create(&tmr_millis);
tls_timer_start(tmr_millis_id);
//Let's start the RTC if not already running
if(!tls_is_rtc_running())
{
shell_printf("Starting RTC"NEW_LINE);
struct tm curr_time;
time_date_to_tm(__TIME__" "__DATE__, &curr_time);
tls_set_rtc(&curr_time);
}
//We create a task for the nano_shell process
u8 *nano_shell_task_stack = NULL, *nano_shell_server_task_stack = NULL;
tls_uart_rx_callback_register(TLS_UART_0, &(uart0_rx_callback), NULL);
tls_uart_rx_callback_register(TLS_UART_1, &(uart1_rx_callback), NULL);
//we test the NRF lib here
/*NRF24L01P_t NRF;
shell_printf("Checking NRF setup."NEW_LINE);
shell_printf("Setting SPI to 1 Mhz : %d."NEW_LINE, tls_spi_setup(SPI_DEFAULT_MODE, SPI_CS_ACTIVE_MODE, 8000000));
shell_printf("NRF begin : %d."NEW_LINE, NRF24L01P_begin(&NRF));
shell_printf("Is NRF connected : %d."NEW_LINE, NRF24L01P_isChipConnected(&NRF));
//NRF24L01P_setChannel(&NRF, 2);
NRF24L01P_setPALevel(&NRF, RF24_PA_LOW, false);
//NRF24L01P_setDataRate(&NRF, RF24_250KBPS);
//NRF24L01P_setRetries(&NRF, 8, 15);
NRF24L01P_enableDynamicPayloads(&NRF);
NRF24L01P_enableAckPayload(&NRF);
NRF24L01P_maskIRQ(&NRF, true, true, false);
const uint8_t ADDR[5] = {0xE7, 0xE7, 0xE7, 0xE7, 0xE7};
const uint8_t ack_pl[] = "1234567";
NRF24L01P_openWritingPipe(&NRF, "1Node");
NRF24L01P_openReadingPipe(&NRF, 1, "2Node");
NRF24L01P_writeAckPayload(&NRF, 1, ack_pl, sizeof ack_pl);
NRF24L01P_startListening(&NRF);
shell_printf("NRF PA level : %d"NEW_LINE, NRF24L01P_getPALevel(&NRF));
NRF24L01P_printDetails(&NRF);*/
//uint8_t payload[32] = "Hello W801";
//shell_printf("Sending payload : %d"NEW_LINE, NRF24L01P_write(&NRF, payload, sizeof payload));
//NRF24L01P_printDetails(&NRF);
nano_shell_server_task_stack = tls_mem_alloc(sizeof(u32) * NANO_SHELL_SERVER_TASK_STK_SIZE);
if(nano_shell_server_task_stack != NULL)
{
tls_os_status_t status = tls_os_task_create(
&nano_shell_server_task_handle,
"shll_srv",
&(nano_shell_server_task),
NULL,
(void*) nano_shell_server_task_stack,
NANO_SHELL_SERVER_TASK_STK_SIZE * sizeof(u32_t),
62,
0
);
if(status != TLS_OS_SUCCESS)
shell_printf("Failed to create nano shell server task."NEW_LINE);
}
nano_shell_task_stack = tls_mem_alloc(sizeof(u32) * NANO_SHELL_TASK_STK_SIZE);
if(nano_shell_task_stack != NULL)
{
tls_os_task_create(
&nano_shell_task_handle,
"na_shell",
&(nano_shell_loop),
NULL,
(void*) nano_shell_task_stack,
NANO_SHELL_TASK_STK_SIZE * sizeof(u32),
62,
0
);
}
shell_printf("Registering netif callback."NEW_LINE);
tls_netif_add_status_event(&(tls_netif_status_event_cb));
for(;;)
{
tls_pwm_duty_set(3, pwm_led_duty_cycle);
if(pwm_led_duty_cycle == FADE_LOW_THRESHOLD)
{
fading_direction = FADE_UP;
tls_os_time_delay(pdMS_TO_TICKS(pulse_rate == PULSE_SLOW ? 500 : 100));
}
else if(pwm_led_duty_cycle == FADE_HIGH_THRESHOLD)
{
fading_direction = FADE_DOWN;
tls_os_time_delay(pdMS_TO_TICKS(pulse_rate == PULSE_SLOW ? 500 : 100));
}
pwm_led_duty_cycle+=fading_direction;
tls_os_time_delay(pdMS_TO_TICKS(pulse_rate));
/*if(nrf_irq)
{
bool tx_ok, tx_fail, rx_ready;
NRF24L01P_whatHappened(&NRF, &tx_ok, &tx_fail, &rx_ready);
shell_printf("NRF event : tx_ok %d, tx_fail %d and rx_ready : %d, rx fifo full ? %u, tx fifo full ? %u"NEW_LINE, tx_ok, tx_fail, rx_ready, NRF24L01P_rxFifoFull(&NRF), NRF24L01P_txFifoFull(&NRF));
if(NRF24L01P_available(&NRF))
{
char payload[32] = "";
NRF24L01P_read(&NRF, payload, 8);
shell_printf("Received : #%s#\r\n", payload);
NRF24L01P_writeAckPayload(&NRF, 1, ack_pl, sizeof ack_pl);
}
nrf_irq = false;
}*/
}
}