

WM_W800_参数区使用说明

V1.2

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档修改记录

版本	修订时间	修订记录	作者	审核
V0.1	2019/9/25	[C]创建文档	Cuiyc	
V0.2	2020/7/8	统一字体	Cuiyc	
V1.0	2020/8/10	升级版本号	Cuiyc	
V1.1	2021/2/23	更新用户区大小, 与 SDK 保持一致	Cuiyc	
V1.2	2021/5/13	更新用户区区变化的编译脚本调整	Cuiyc	

目录

文档	皆修改记录	录	2
目录	ŧ		
1	引言		5
	1.1	编写目的	5
	1.2	预期读者	5
	1.3	术语定义	5
	1.4	参考资料	5
2	QFLASH	H 参数区布局	6
	2.1	物理层参数区	6
	2.2	用户参数区	7
	2.3	系统参数区域	7
3	物理层参	参数区	
	3.1	物理层参数介绍	
	3.2	物理层参数写入阶段	
	3.3	物理层参数的使用	
4	系统参数	数区	9
	4.1	系统参数介绍	9
	4.2	系统参数的使用	9
	4.2	4.2.1 初始化阶段	9
	4.2	1.2.2 参数使用阶段	11
5	用户参数	数区	

Winner Micro 联盛德微电子

5.1	用戶	□参数	12
5.2	用戶	⁵ 区使用	12
	5.2.1	用户参数区的操作	12
	5.2.2	用户参数区的调整规则	12
	5.2.3	用户参数区的双备份机制	17

1 引言

1.1 编写目的

本文档主要用于阐述 W800 中的 QFLASH 布局,关键参数区和系统参数区使用以及用 户参数区处理。

1.2 预期读者

该文档适用的读者包括研发人员、测试人员、架构师等。

1.3 术语定义

序号	术语/缩略语	说明/定义
1	QFLASH	Quad-SPI FLASH
2	SECBOOT	Second Boot, relative to ROM
3	ROM	Read-Only Memory

1.4 参考资料

无

2 QFLASH 参数区布局

OTA Param (4KB)	0x8XFFFFF
System Param (12KB)	
User Area (>=112KB,When X>=1)	UX8AFC000
Image Run area (1087KB)可变	
Run Image Header(1KB)可变	-0x80D0400
Image OTA Area (768KB)	
SecBoot Image Area (55KB)	
SecBoot Image Header (1KB) RF data (8KB)	 0x8002400 0x8002000 0x8000000

图 2-1

本文档以 X=1 为例,即 Flash 容量为 2MByte。

2.1 物理层参数区

地址空间: 0x8000000-0x8000FFF, 共 4KByte

参数内容:

MAC 地址和 RF 参数。

参数布局:

	0x8000080
RF Param	
MAC Addr(8byte)	_
Key Param Header (12byte)	
	0x8000000

图 2-2

2.2 用户参数区

地址空间: 0x81E0000-0x81FBFFF, 共 112KByte

参数内容:

用于用户存放自定义参数时使用。

参数布局:

用户自定义

2.3 系统参数区域

地址空间: 0x81FC000-0x81FEFFF, 共 12KByte

参数内容:

系统运行时所需的相关参数

参数布局:

MAGIC Number:4Byte	
PARTITION_NUM:2Byte	MODIFY_CNT:2Byte
RESERVED:4Byte	
RESERVED:2Byte	Length:2Byte(整 个
	参数的大小,包含 CRC
	值,由系统参数决定)
Data Content(系统参数决定) CRC Value:4Byte(CRC 之前的内容的值)	

- 1) 系统参数1区: 0x81FC000-0x81FCFFF
- 2) 系统参数 2 区: 0x81FD000-0x81FDFFF
- 3) 系统参数 3 区: 0x81FE000-0x81FEFFF

3 物理层参数区

3.1 物理层参数介绍

W800 模块工作所需要的 MAC 地址,以及 Wi-Fi 收发机工作所需要的 RF 校准参数

3.2 物理层参数写入阶段

W800 芯片或者模块生产时写入

3.3 物理层参数的使用

W800 模块启动时会从关键参数区把所需参数读取出来使用。

物理层参数具有备份机制。

4 系统参数区

4.1 系统参数介绍

系统参数是指 W800 模块运行时所需要的联网,接口配置,模式配置等的参数,具体如下:

1)Wi-Fi相关(SSID, BSSID, KEY, 信道列表, 节电标志, 速率设置, 区域码, 工作 模式)

2) IP 信息(静态 IP, DHCP 使能信息, NTP 服务器, DNS 服务器)

3) 接口配置(UART 配置)

4) BT 参数

- 5) 其他参数(WEB)
- 4.2 系统参数的使用
- 4.2.1 初始化阶段

系统参数区具有备份机制,通过 CRC 和 MODIFY_CNT 校验值确定使用哪个参数区的内容作为系统运行时使用的参数,具体机制为:

1)参数区 CRC 均正确的情况下, 依据 MODIFY_CNT 选取使用的当前参数

2)参数区 CRC 只有一个正确的情况下,选择 CRC 正确的参数区作为当前参数,另外一 个参数区更新为当前参数区的值

3)参数区 CRC 都不正确的情况下,首先尝试参数恢复,如果尝试恢复后,参数依然都 不正确,则使用默认参数值作为运行时使用参数,同时,更新参数区的内容为默认参数。

图 5-1

- 4.2.2 参数使用阶段
 - 1)参数获取

系统参数区除了存放于 QFLASH 的两个区域外,还会在初始化的时候在内存中备份 一份,以便于运行时的使用,防止频繁访问 QFLASH。

- 2)参数写入
 - (1) 系统启动时, 第一次初始化或者参数区有破坏, 会写参数区
 - (2)运行中,系统参数更新,会写参数区

5 用户参数区

5.1 用户参数

W800 使用者期望存储自定义的参数或者运行日志。

- 5.2 用户区使用
- 5.2.1 用户参数区的操作

W800的 SDK 会增加针对用户参数区的操作机制,保证用户针对参数区的操作仅使用相

对地址(相对 USER_ADDR_START)即可实现。

5.2.2 用户参数区的调整规则

W800 的默认 QFLASH 的布局所能提供给用户的区域为 240KByte。但是,当前的 W800 用户参数区设置是依据尽可能大的代码区来设计的。

- 5.2.2.1 用户参数区的调整规则:
 - 1) 依据用户编译的 w800.img 确定的所用运行区空间

OTA Param (4KB)	0x8x55000
System Param (12KB)	0.875000
User Area (>=240KB,When X>=1)	0x8xFC000
Image Run area (959KB)	0.810000
Run Image Header(1KB)	0x80D0400
Image OTA Area (768KB)	0.0000000
SecBoot Image Area (55KB)	000000000000000000000000000000000000000
SecBoot Image Header (1KB)	0x8002400
RF data (8KB)	0x8002000
	0x8000000

图 5-1

2) 依据 w800.img 的压缩比来确定所用的升级区空间

	0x8XFFFF
OTA Param (4KB)	0x8XEE000
System Param (12KB)	
User Area (>=240KB,When X>=1)	0x81C000
Image Run area (959KB)	
Run Image Header(1KB)	-0x80D0400
Image OTA Area (768KB)	
SecBoot Image Area (55KB)	0x8010000
SecBoot Image Header (1KB)	0x8002400
RF data (8KB)	0,0002000

3) 依据 w800.img 的大小按照 QFLASH 的 BLOCK (64Kbyte) 区间向上取整划分 (需

要重点关注)。

- 4) 依据 IMAGE 的划分结果重新确定用户空间的起始地址。
- 5) 根据新划分的空间调整 W800 SDK 的宏定义确定新的用户空间起始地址

6) 调整用户空间后,还需要更新配置文件和链接文件

配置文件调整:

- (1) 针对使用 linux 或者 cygwin 方式使用命令编译的用户, 需要调整文件:
 - 使用 make menuconfig 进入界面调整 Image Headeraddress 和

Image run header address 的位置(如下图)

Arrow key Pressing	- Firmware Configuration /s navigate the menu. <enter> selects submenus>. Highlighted letters are hotkeys. <y> includes, <n> excludes. Press <esc><esc> to exit, <? > for Help, for Search.</esc></esc></n></y></enter>
	<pre>(w800) target name (1) image type (0x8080000) image header address (0x8080400) image run address (8010000) image update address (0) image key select (0) image signature (0) image encrypt (0) image decrypt</pre>
	<pre><select> < Exit > < Help > < Save > < Load ></select></pre>

如果不想使用上述界面,可以直接修改 tools\w800 目录下的.config
 文件下面两个值:

CONFIG_W800_IMAGE_HEADER=8080000

CONFIG_W800_RUN_ADDRESS=8080400

(2) 针对使用 CDK 工程的用户, 需要修改: tools\w800\utilities 下

aft_build_project.sh 里的两个变量的值:

run_img_header=8080000

run_img_pos=8080400

链接文件调整:

修改 ld\w800 目录下 gcc_csky.ld,修改 I-SRAM 的 ORIGIN 值 (如下):

I-SRAM : ORIGIN = 0x08080400 , LENGTH = 0x120000 /* I-SRAM */

7) 重新 make 编译烧录 w800.fls 文件, 模块启动后, 用户参数区即变为新的设定值。

注意:

如果客户使用的 V1.00.02 版本之前的 SDK, 需要同步更新一下 V1.00.02 版本相关的

修改,才可使用。

5.2.2.2 举例

如果用户编译的 IMAGE 大小为

W800.img: 560KByte

压缩后 img: 400KByte

把 IMAGE 的大小向上取 64KByte 的整数倍 (重要),则

运行区空间: 576KByte

升级区空间:448KByte

- 配置步骤如下:
- 1) 用户的新空间如图黄色部分

OTA Param (4KB)	0x8xFFFF
System Param (12KB)	0x8xFF000
User Area (>=944KB,When X>=1)	0x8XFC000
Image Run area (575KB)	0x8110000
Run Image Header(1KB)	0x8080400
Image OTA Area (448KB)	
SecBoot Image Area (55KB)	0x8010000
SecBoot Image Header (1KB)	0x8002400
RF data (8KB)	0x8002000
	00000000

图 6-3

2) 新的代码空间调整为:

<pre>/**Flash Base Address */ #define FLASH_BASE_ADDR</pre>	(0x800000UL)
/** Upgrade image area */ #define CODE_UPD_START_ADDR	(0x8010000UL)
<pre>#define CODE RUN_START_ADDR</pre>	(0x808000000000000000000000000000000000
/**Area can be used by User*/ #define USER_ADDR_START	(0x8110000UL)

3)调整用户空间后,还需要更新配置文件和链接文件

配置文件调整:

- (3) 针对使用 linux 或者 cygwin 方式使用命令编译的用户, 需要调整文件:
 - 使用 make menuconfig 进入界面调整 Image Headeraddress 和

Image run header address 的位置

Firmware Configuration
-Firmware Configuration Arrow keys navigate the menu. <enter> selects submenus>. Highlighted letters are hotkeys. Pressing <y> includes, <n> excludes. Press <esc> to exit, <? > for Help, for Search.</esc></n></y></enter>
<pre>(w800) target name (1) image type (0x8080000) image header address (0x8080400) image unaddress (8010000) image undate address (8010000) image signature (9) image signature (9) image encrypt (0) image decrypt</pre>
<pre><select> < Exit > < Help > < Save > < Load ></select></pre>

● 如果不想使用上述界面,可以直接修改 tools\w800 目录下的.config

文件下面两个值:

CONFIG_W800_IMAGE_HEADER=8080000

CONFIG_W800_RUN_ADDRESS=8080400

(4) 针对 CDK 用户, 需要修改: tools\w800\utilities 下 aft_build_project.sh

里的两个变量的值:

run_img_header=8080000

run_img_pos=8080400

链接文件调整:

修改 ld\w800 目录下 gcc_csky.ld,修改 I-SRAM 的 ORIGIN 值 (如下):

I-SRAM : ORIGIN = 0x08080400 , LENGTH = 0x120000 /* I-SRAM */

4) 重新 make 编译烧录 w800.fls 文件,模块启动后,用户参数区即变为新的设定值。

说明:

如果客户使用的 V1.00.02 版本之前的 SDK,需要同步更新一下 V1.00.02 版本相关的

修改,才可使用。

5.2.3 用户参数区的双备份机制

如果用户参数区会记录关键信息,建议用户实现双备份机制,主区和备区按照 4Kbyte 间隔划分。