

WM_W800_SDK 用户手册 V1.1

北京联盛德微电子有限责任公司 (winner micro)

地址:北京市海淀区阜成路 67 号银都大厦 18 层

电话: +86-10-62161900

公司网址: www.winnermicro.com

文档修改记录

版本	修订时间	修订记录	作者	审核
V0.1	2019/9/25	[C]创建文档	Cuiyc	
V0.2	2020/7/8	统一字体	Cuiyc	
V1.0	2020/8/10	升级版本号	Cuiyc	
V1.1	2020/11/5	更新数字接口说明	Ray	

目录

又	:档修改:	记录		2
Ħ	录			3
1	引言			4
	1.1	概过	<u>\$</u>	4
	1.2	芯片	¦简介	5
	1.3	SDF	〈基本特征	7
2	SDK	使用说印	F	11
	2.1	软件	片架构	11
	2.2		₹结构	
	2.3	编译	译连接	12
		2.3.1	CDS 工程编译	12
			CDK 工程编译	
		2.3.3	命令行编译	13
		2.3.4	编译结果	13
	2.4	烧录	表固件	14
		2.4.1	通过 ROM 烧录	14
		2.4.2	通过 SECBOOT 烧录	14
	2.5	程序	R调试	15
		2.5.1	固件调试信息	15
		2.5.2	CK-LINK 调试	15

		2.5.3	AT 指令调试	. 16
	2.6	开发	发工具	. 16
	2.7	编证	¥工具	. 16
		2.7.1	IDE 开发环境—CDS/CDK	. 16
		2.7.2	命令行的 GCC	. 16
	2.8	固倍	牛生成工具	. 17
	2.9	下载	載工具	. 17
	2.10	调证	式工具	. 17
3	开发:	指南		. 17
	3.1	WN	/I_SDK 启动方式	. 17
	3.2	用戶	□程序入口	. 18
	3.3	内存	字使用	. 18
	3.4	FLA	ASH 布局	. 19
	3.5	用戶	^立 参数管理	. 19
	3.6	系统	充参数管理	20

1 引言

1.1 概述

本文主要描述 W800 软件开发包(SDK)的功能和使用方法,该 SDK 集成了 W800 硬件驱动(BSP)、实时操作系统、TCP/IP 协议栈、WiFi 协议栈,BT 协议栈以及其它公共模块,能够满足大部分应用软件的需求。

1.2芯片简介

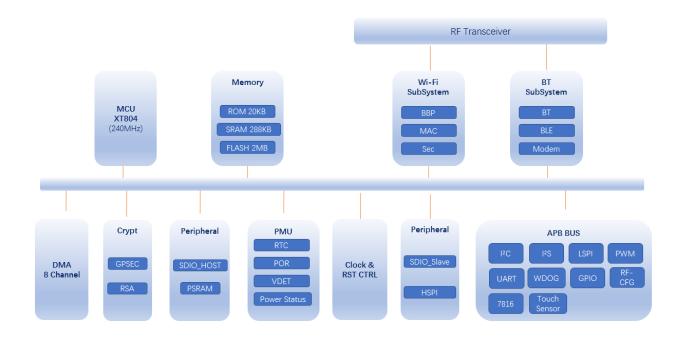


Figure 1 W800 芯片架构

● 芯片外观

✓ QFN32 封装, 4mm x 4mm

● MCU 特性

- ✓ 集成 32 位 XT804 处理器,工作频率 240MHz,内置 DSP、浮点运算单元与安全引擎
- ✓ 内置 2MB Flash, 288KB RAM
- ✓ 集成 PSRAM 接口,支持最高 64MB 外置 PSRAM 存储器
- ✓ 集成 5 路 UART 高速接口
- ✓ 集成 2 路 16 比特 ADC, 最高采样率 1KHz
- ✓ 集成 1 个高速 SPI 接口,支持最高 50MHz
- ✓ 集成 1 个 SDIO_HOST 接口,支持 SDIO2.0、SDHC、MMC4.2
- ✓ 集成 1 个 SDIO_DEVICE,支持 SDIO2.0,最高吞吐率 200Mbps

- ✓ 集成1个I²C 控制器
- ✓ 集成 GPIO 控制器,最多支持 18 个 GPIO
- ✓ 集成 5 路 PWM 接口
- ✓ 集成 1 路 Duplex I²S 控制器
- ✓ 集成 11 个 Touch Sensor

● 安全特性

- ✓ MCU 内置 Tee 安全引擎, 代码可区分安全世界/非安全世界
- ✓ 集成 SASC/TIPC, 内存及内部模块/接口可配置安全属性, 防止非安全代码访问
- ✓ 启用固件签名机制,实现安全 Boot/升级
- ✓ 具备固件加密功能,增强代码安全
- ✓ 固件加密密钥使用非对称算法分发,增强密钥安全性
- ✓ 硬件加密模块: RC4256、AES128、DES/3DES、SHA1/MD5、CRC32、2048 RSA,真随机数 发生器

● Wi-Fi 特性

- ✓ 支持 GB15629.11-2006, IEEE802.11 b/g/n
- ✓ 支持 Wi-Fi WMM/WMM-PS/WPA/WPA2/WPS
- ✓ 支持 EDCA 信道接入方式
- ✓ 支持 20/40M 带宽工作模式
- ✓ 支持 STBC、GreenField、Short-GI、支持反向传输
- ✓ 支持 AMPDU、AMSDU

- ✓ 支持 IEEE802.11n MCS 0~7、MCS32 物理层传输速率档位,传输速率最高到 150Mbps
- ✓ 2/5.5/11Mbps 速率发送时支持 Short Preamble
- ✓ 支持 HT-immediate Compressed Block Ack、Normal Ack、No Ack 应答方式
- ✓ 支持 CTS to self
- ✓ 支持 Station、Soft-AP、Soft-AP/Station 功能

● 蓝牙特性

✓ 集成蓝牙基带处理器/协议处理器,支持BT/BLE 双模工作模式,支持BT/BLE4.2 协议

● 电源管理

- ✓ 3.3V 单电源供电
- ✓ 支持 Wi-Fi 节能模式功耗管理
- ✓ 支持工作、睡眠、待机、关机工作模式
- ✓ 待机功耗小于 15uA

1.3 SDK 基本特征

W800 SDK 是集 RTOS 内核,硬件驱动,Wi-Fi 协议栈,蓝牙协议栈,TCP/IP 协议栈,网络应用协议,

AT 指令集,多种应用层协议以及相应的示例代码于一体的嵌入式 Wi-Fi、蓝牙应用开发平台。

它提供的功能有:

无线

- 支持 IEEE802.11b/g/n 无线标准
- 支持 BT/BLE4.2
- 支持频率范围: 2.412~2.484 GHz
- 支持基础网 (Infra)
 - ▶ 支持多种加密和认证机制: OPEN/WEP64/WEP128/TKIP/CCMP/WPA-PSK/WPA2-PSK
 - ▶ 支持快速联网模式 (指定信道与 BSSID)
 - ▶ 支持无线漫游
 - ▶ 支持 PS-POLL 节能模式
 - ▶ 支持 WPS 功能
- 支持软 AP 《
 - ▶ 支持 OPEN、WEP、TKIP、AES 加密认证
 - ▶ 最多支持 8 个 station 连接
 - ▶ 支持 STA 的 PS-POLL 节能
- 支持软 APSTA
 - ▶ 支持 2 级级联
 - ▶ 最多支持 8 个 station 连接

驱动

● 支持 UART 接口通信

- ▶ 支持 UART 数据接口,接口最大速率 2Mbps
- 支持用户可编程的 GPIO 控制
- 支持 HSPI 接口
- 支持 SDIO 接口
- 支持外扩 PSRAM 接口
- 支持 I2S 接口
- 支持 I2C 接口,最大速率 400Kbps
- 支持 7816 接口
- 支持硬件加解密
- 支持外挂 SPI-FLASH
- 支持内置 FLASH
- 支持 ADC 接口
- 支持 PWM 接口

联网

- 支持不同配网方式
 - ONESHOT
 - > WPS
 - ➤ WEB 页面
 - ➤ AIRKISS
 - ▶ 蓝牙
- 支持 API 方式联网(针对二次开发者)
- 支持 AT 指令方式联网(针对 AT 指令开发者)

TCP/IP 协议

- 支持多种网络协议: TCP/UDP/ICMP/DHCP/DNS
- 支持 DHCP Server、DNS Server
- 支持 HTTP Client、HTTP Server 功能
- 支持 IPERF

其它

- 支持 AT 指令集
- 支持标准 socket 接口
- 支持 m-DNS
- 支持 web socket
- 支持 SSL Server、SSL Client
- 支持 OS 替换
- 支持云移植
- 支持基于串口方式的模块生产测试
- 提供各种使用文档

2 SDK 使用说明

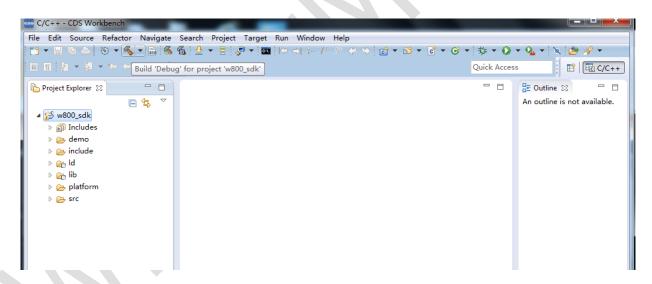
2.1 软件架构

Examples (For Developper)			AT Command(For AT User)			
			Application Protocol(DHCPS,DNS,SSL,m-DNS,HTTP,MQTT)			
OS API		Driver API	Wlan API	Socket	BT/BLE API	Memory API
Fuer DTOS	Other RTOS	Driver (12C, 12S, PWM,	WLAN Supplicant	LWIP STACK	BT STACK	Memory
Free RTOS	(RTT, LiteOS, AliOS)	GPIO, RTC, Timer, WDG, 7816, inner Flash, ADC, LSPI)	216, inner		BT Driver	Management
BSP						

Figure 2 软件架构图

2.2目录结构

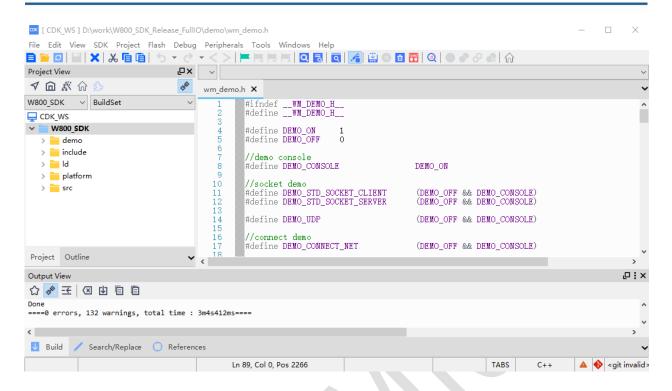
WM_SDK 用户程序开发入口 —арр ├—bin 可执行文件 -demo 基本 DEMO 功能 ├—doc Release Note/API 文档 ├—include API 头文件 ├—ld 链接脚本文件 Wi-Fi, BT, application 库 |—lib ├—Makefile make 脚本文件


──platform 芯片及平台相关的公共源代码├──src 应用程序,网络协议栈、OS 及第三方开源代码集└──tools 编译脚本、CDS IDE 工程、CDK 工程以及 IMAGE 生成工具

2.3 编译连接

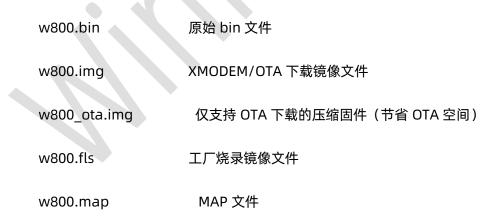
2.3.1 CDS 工程编译

打开 CDS 集成编译环境,导入工程文件。


导入工程文件时,设置要导入的 sdk 根路径,然后,会显示出要导入的工程文件,按照操作进行即可。编译时,选中 sdk 工程后,点击工具栏的 build 或者 rebuild 即开始编译。编译生成的文件放置在 bin 目录下。

2.3.2 CDK 工程编译

进入 tools\w800\projects\SDK_Project\project\CDK_WS 下,通过打开.cdkws 后缀的文件打开 CDK 工程,然后在 Project 下点击 Rebuild All 开始编译工程。



2.3.3 命令行编译

安装指定的编译工具,按照编译工具要求设置,解压 SDK 后,打开工具跳转到 SDK 的根目录下,执行make 即可。

参考文档: 《WM_W800_SDK 脚本编译指南》

2.3.4 编译结果

参考文档:《WM_W800_固件生成说明》

2.4 烧录固件

2.4.1 通过 ROM 烧录

如果出厂的 W800 开发模组没有烧录过固件,则上电的时候,模块会进入 ROM (UARTO) 打印信息如下:

PPPPPPPPPPPPPPCCCCCCCCCCCCC

如果 W800 的开发模组引出了 BOOTMODE 脚,且上电的时候,BOOTMODE 脚被拉低 30ms 以上,则模块也会进入 ROM(仅 UARTO)打印信息如下:

acacacacacacacacacacaca

ROM 依据 XMODEM 下载的不同阶段,命令的执行的结果和启动的不同阶段所遇到的异常状况会通过 UARTO 输出不同的字符,来表示错误码。

参见文档:《WM_W800_ROM 功能简述》 /《WM_W800_固件升级指导》

2.4.2 通过 SECBOOT 烧录

W800 SECBOOT 是一段功能程序,它实现了用户固件搬移、固件启动校验、启动跳转、以及跳转到 ROM XMODEM 的升级等功能。

基于 W800 的开发模组在上电/复位时,如果 UARTO 接收到了 ESC 键,则模块会在 SECBOOT 启动时检测 ESC 键并跳转到 ROM,然后进入串口 XMODEM 下载模式,(UARTO)打印信息如下:

不同的 XMODEM 升级阶段,如果遇到异常,则会通过 UARTO 输出不同的字符,来表示错误码。

参见文档:《WM_W800_ROM 功能简述》,《WM_W800_SECBOOT 功能简述》

2.5程序调试

2.5.1 固件调试信息

SDK 支持标准 C 的 printf 打印调试的功能,输出到物理串口 UARTO,用户可以依据自身需求在调试阶段增加自己的调试打印信息。

SDK 现有的 LOG 信息输出,可以通过 wm_debug.h 文件里的如下宏定义来设置:

/** Define the debugging level: info */

#define TLS_DBG_LEVEL_INFO

TLS_DBG_OFF

/** Define the debugging level: warning */

#define TLS_DBG_LEVEL_WARNING

TLS_DBG_OFF

/** Define the debugging level: error */

#define TLS_DBG_LEVEL_ERR

TLS_DBG_OFF

/** Define the debugging level: dump */

#define TLS DBG LEVEL DUMP

TLS_DBG_OFF

/** general debug info switch, default: off */

#define TLS_GENERAL_DBG

TLS_DBG_OFF

Wi-Fi 的调试信息,需要单独的 Wi-Fi Lib 来支持,且需要用户实现 wm_printf 和 wm_vprintf 两个接口。

2.5.2 CK-LINK 调试

W800 支持 CK-LINK 调试方式。

参考文档:《WM_W800 调试配置指南》

2.5.3 AT 指令调试

W800 支持 AT 指令操作。

参考文档:《WM_W800_AT 指令用户手册》

2.6开发工具

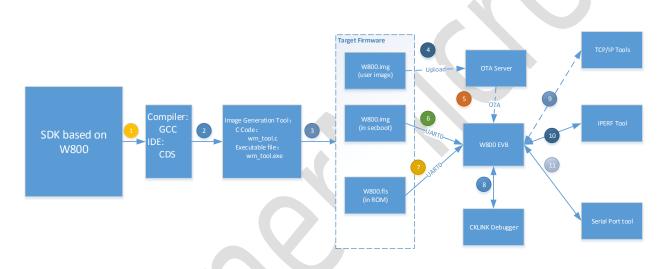


Figure 3 W800 SDK 开发使用流程

2.7 编译工具

2.7.1 IDE 开发环境—CDS/CDK

W800的 SDK 支持 CDS/CDK 集成开发编译环境。

2.7.2 命令行的 GCC

W800 的 SDK 支持命令行的 GCC 开发编译环境,安装 Linux 虚拟机(已集成编译环境)。

参考文档: 《WM_W800_SDK 脚本编译指南》

2.8固件生成工具

W800 的 SDK 目标文件在编译后,需要打包生成目标的升级文件,SDK 自带源码的工具。

参考文档:《WM_W800_固件生成说明》

2.9下载工具

W800 支持串口的 XMODEM 协议升级,推荐使用 SecureCRT。

参考文档:《WM_W800_固件升级指导》

2.10调试工具

TCP/IP 工具: TCP 调试助手, 用来测试 socket 通信

Iperf: 用于测试网络性能

3 开发指南

3.1 wm_sdk 启动方式

WM SDK 的运行方式是基于 W800 芯片内部集成的 32KB Cache 实现的 XIP 方式,运行于 QFLASH。

W800 的启动过程经过 ROM 跳转到 SECBOOT, 再经由 SECBOOT 跳转到用户代码空间。

ROM 负责芯片的基本功能初始化,固化于芯片。

SECBOOT 负责用户空间代码的校验,升级,放置于 QFLASH 的一段空间里。

W800 的 CACHE 空间大小为 32KB, 当运行代码大小小于 32K 时, CPU 将无需从 QFLASH 读取指令。

3.2 用户程序入口

W800 模块启动后通过 ROM 和 SECBOOT 程序运行后,最终会运行到 startup.S 开始执行,然后,跳转到 wm_main.c 文件进行一些初始化功能,最后,进入 main.c 打印 user task。

WM_SDK 的用户程序(main.c)开始入口为: UserMain(void),用户可在此文件,基于CreateDemoTask 函数中创建自己的 Task,完成定制化功能。目前 DEMO CODE 提供了一个CreateDemoTask 用于测试 SDK 提供的 API,客户可以根据实际需要修改。

```
void UserMain(void)
{
    printf("\n user task\n");
#if WM_DEMO
    CreateDemoTask();
#endif
}
```

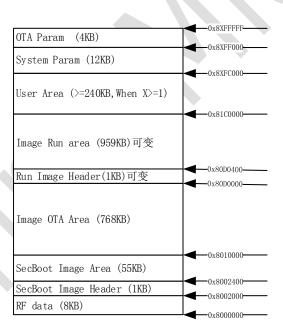
3.3 内存使用

W800 共有 160K Byte SRAM+128K Byte(可配置空间),地址空间为【0x20000000 - 0x2048000】,用于系统运行时堆栈和 Wi-Fi 收发 BD。

系统堆大小设置,位于 gcc_csky.ld 文件中,如下定义:

 $_{\rm min}heap_{\rm size} = 0x10000;$

PROVIDE ($_$ ram $_$ end = 0x2003c000);


PROVIDE (__heap_end = __ram_end);

来配置系统堆的大小,其中__heap_end 决定了链接后实际的堆大小,可在 image 启动后,实际确认一下堆的大小。

目前,默认最小堆配置为 64KBytes。

3.4 FLASH 布局

W800 默认采用内置 2M Byte QFlash 空间, 具体分配如下 (图中 X=1):

用户可用参数区 240Kbyte,可以依据运行区与升级区的 IMAGE 大小进行调整。

参考文档:《W800 参数区使用说明》,《WM_W800_QFLASH 布局说明》

3.5 用户参数管理

W800 使用者期望存储自定义的参数或者运行日志。当前的 SDK 的 QFLASH 布局用户可用的空间为 240KB, 地址范围为: 0x81C0000-0x81FBFFF。

如果用户的代码空间有冗余,则用户可按照自己的需要重新调整 QFLASH 的代码区和用户参数区的空间,增加用户参数区空间。

参考文档:《WM_W800_参数区使用说明》

3.6系统参数管理

系统参数是指 W800 模块运行时所需要的联网,接口配置,模式配置等的参数,具体如下:

- 1) Wi-Fi 相关 (SSID, BSSID, KEY, 信道列表, 节电标志, 速率设置, 区域码, 工作模式)
- 2) IP 信息 (静态 IP, DHCP 使能信息, NTP 服务器, DNS 服务器)
- 3)接口配置(UART模式配置)
- 4) 其他参数(WEB)

系统参数区位于: 0x81FC000-0x81FEFFF。该参数区用户不可用作其它用途。

参考文档:《WM_W800_参数区使用说明》