Clean project structure up, added some commented out functions to try make the ST7789 round lcd work (was a failure). Added the i2c.h and .c file, still work to be done on that side. The round LCD display is using a 3-line 9 bit serial interface ... This suck !

This commit is contained in:
Th3maz1ng 2022-12-11 21:20:29 +01:00
parent eeaf819b80
commit 65a1a5dd49
23 changed files with 590 additions and 758 deletions

View File

@ -3,8 +3,9 @@ sinclude $(TOP_DIR)/tools/w800/conf.mk
ifndef PDIR
GEN_LIBS = libdrivers$(LIB_EXT)
COMPONENTS_libdrivers = lcd/libdriverslcd$(LIB_EXT)
COMPONENTS_libdrivers = mmc_sdio/libdriversmmc_sdio$(LIB_EXT)
COMPONENTS_libdrivers = lcd/libdriverslcd$(LIB_EXT) \
mmc_sdio/libdriversmmc_sdio$(LIB_EXT) \
i2c/libdriversi2c$(LIB_EXT)
endif
#DEFINES +=

View File

@ -0,0 +1,15 @@
TOP_DIR = ../../..
sinclude $(TOP_DIR)/tools/w800/conf.mk
ifndef PDIR
GEN_LIBS = libdriversi2c$(LIB_EXT)
endif
#DEFINES +=
sinclude $(TOP_DIR)/tools/w800/rules.mk
INCLUDES := $(INCLUDES) -I $(PDIR)include
PDIR := ../$(PDIR)
sinclude $(PDIR)Makefile

View File

@ -0,0 +1,11 @@
#include "wm_type_def.h"
#include "wm_io.h"
#include "wm_gpio_afsel.h"
#include "wm_i2c.h"
void i2c_init(enum tls_io_name SDAPin, enum tls_io_name SCLPin, uint32_t frequency)
{
wm_i2c_sda_config(SDAPin);
wm_i2c_scl_config(SCLPin);
tls_i2c_init(frequency);
}

View File

@ -0,0 +1,12 @@
#ifndef I2C_H
#define I2C_H
#include "wm_type_def.h"
#include "wm_io.h"
void i2c_init(enum tls_io_name SDAPin, enum tls_io_name SCLPin, uint32_t frequency);
bool i2c_write(uint8_t address, const uint8_t *data, size_t length, bool sendStop);
#endif //I2C_H

View File

@ -3,7 +3,6 @@ sinclude $(TOP_DIR)/tools/w800/conf.mk
ifndef PDIR
GEN_LIBS = libdriverslcd$(LIB_EXT)
COMPONENTS_libdriverslcd = ../mmc_sdio/libdriversmmc_sdio$(LIB_EXT)
endif
#DEFINES +=

View File

@ -1,31 +1,35 @@
#include <string.h>
#include "FreeRTOS.h"
#include "mmc_sdio.h"
#include "lcd.h"
#include "app_log.h"
static void lcd_write_cmd_data_bytes(LCDConfig_t * const LCDConfig, const u8 *cmdAndData, u32 dataLengthInBytes)
{
// Select the slave CS line and tell him that he will receive a command !
lcd_set_cs(LCDConfig, LCD_SELECTED);
lcd_set_data_command(LCDConfig, LCD_COMMAND);
/**
* @brief Prototype of functions only used internally :
*
*/
mmc_sdio_driver_write_one(*cmdAndData++);
if(dataLengthInBytes >= 2)
{
lcd_set_data_command(LCDConfig, LCD_DATA);
/* Sets the LCD write window area */
static void lcd_set_window(LCDConfig_t * const LCDConfig, uint16_t x_start, uint16_t y_start, uint16_t x_end, uint16_t y_end);
for (size_t i = 0; i < dataLengthInBytes - 1; ++i)
mmc_sdio_driver_write_one(*cmdAndData++);
}
/* Sets the chip select pin */
static void lcd_set_cs(LCDConfig_t * const LCDConfig, LCDSelect_e selected);
// We release the slave CS line and tell him that we are in DATA mode
lcd_set_cs(LCDConfig, LCD_RELEASED);
lcd_set_data_command(LCDConfig, LCD_DATA);
}
/* Sets the data/command pin state */
static void lcd_set_data_command(LCDConfig_t * const LCDConfig, LCDDataCommand_e dataCommand);
/**
* @brief Writes a command byte + dataLengthInBytes - 1 data bytes.
*
* @param LCDConfig a pointer a user allocated LCDConfig_t structure
* @param cmdAndData a buffer containing one command byte + X data bytes
* @param dataLengthInBytes the length of the buffer ie : 1 + X data bytes
*/
static void lcd_write_cmd_data_bytes(LCDConfig_t * const LCDConfig, const uint8_t *cmdAndData, uint32_t dataLengthInBytes);
// ST7789初始化
const uint8_t st7789_init_seq[] = {
/* len , delay, cmd, data ... */
/*const uint8_t st7789_init_seq[] = {
// len , delay, cmd, data ...
0x01, 0x14, 0x01, // Software reset
0x01, 0x0A, 0x11, // Exit sleep mode
0x02, 0x02, 0x3A, 0x55, // Set colour mode to 16 bit
@ -36,6 +40,34 @@ const uint8_t st7789_init_seq[] = {
0x01, 0x02, 0x13, // Normal display on, then 10 ms delay
0x01, 0x02, 0x29, // Main screen turn on, then wait 500 ms
0 // Terminate list
};*/
const uint8_t st7789_init_seq[] = {
/* len , delay, cmd, data ... */
0x01, // Software reset
0x11, // Exit sleep mode
//0x02, 0x02, 0x3A, 0x05, // Set colour mode to 16 bit
//0x02, 0x0A, 0x36, 0x00, // Set MADCTL: row then column, refresh is bottom to top ????
//0x05, 0x0A, 0x2A, 0x00, 0x00, 0x00, 0xf0, // CASET: column addresses from 0 to 240 (f0)
//0x05, 0x0A, 0x2B, 0x00, 0x00, 0x01, 0x40, // RASET: row addresses from 0 to 240 (f0)
//0x01, 0x0A, 0x21, // Inversion on, then 10 ms delay (supposedly a hack?)
0x13, // Normal display on, then 10 ms delay
0x29, // Main screen turn on, then wait 500 ms
0 // Terminate list
};
const uint8_t st7789_init_seq_9_bit[] = {
/* len , delay, cmd, data ... */
0x01, 0x14, 0x01, // Software reset
0x01, 0x0A, 0x11, // Exit sleep mode
//0x02, 0x02, 0x3A, 0x05, // Set colour mode to 16 bit
//0x02, 0x0A, 0x36, 0x00, // Set MADCTL: row then column, refresh is bottom to top ????
//0x05, 0x0A, 0x2A, 0x00, 0x00, 0x00, 0xf0, // CASET: column addresses from 0 to 240 (f0)
//0x05, 0x0A, 0x2B, 0x00, 0x00, 0x01, 0x40, // RASET: row addresses from 0 to 240 (f0)
//0x01, 0x0A, 0x21, // Inversion on, then 10 ms delay (supposedly a hack?)
0x01, 0x0A, 0x13, // Normal display on, then 10 ms delay
0x01, 0x0A, 0x29, // Main screen turn on, then wait 500 ms
0 // Terminate list
};
/**
@ -139,6 +171,8 @@ void lcd_config_init(LCDConfig_t * const LCDConfig)
{
if(!LCDConfig) return;
memset(LCDConfig, 0, sizeof(LCDConfig_t));
LCDConfig->LCDPWMBacklightPin = -1;
LCDConfig->LCDClockPin = -1;
LCDConfig->LCDDataPin = -1;
@ -148,6 +182,76 @@ void lcd_config_init(LCDConfig_t * const LCDConfig)
}
/*void spi_write_9_bit(LCDConfig_t * const LCDConfig, bool data, uint8_t op)
{
lcd_set_cs(LCDConfig, LCD_SELECTED);
if(data)
{
tls_gpio_write(LCDConfig->LCDDataPin, 1);
}
else
{
tls_gpio_write(LCDConfig->LCDDataPin, 0);
}
tls_gpio_write(LCDConfig->LCDClockPin, 1);
tls_gpio_write(LCDConfig->LCDClockPin, 0);
for(uint8_t i = 0; i < 8; i++)
{
tls_gpio_write(LCDConfig->LCDDataPin, op & 0x80);
tls_gpio_write(LCDConfig->LCDClockPin, 1);
tls_gpio_write(LCDConfig->LCDClockPin, 0);
op <<= 1;
}
lcd_set_cs(LCDConfig, LCD_RELEASED);
}*/
/*void spi_write_9_bit(LCDConfig_t * const LCDConfig, bool data, uint8_t op)
{
if(data)
{
lcd_set_data_command(LCDConfig, LCD_DATA);
}
else
{
lcd_set_data_command(LCDConfig, LCD_COMMAND);
}
APP_LOG_DEBUG("A");//for(volatile uint32_t i = 0; i < 1000; i++);
lcd_set_cs(LCDConfig, LCD_SELECTED);
for(uint8_t i = 0; i < 8; i++)
{
tls_gpio_write(LCDConfig->LCDDataPin, op & 0x80);
APP_LOG_DEBUG("B");//for(volatile uint32_t i = 0; i < 1000; i++);
tls_gpio_write(LCDConfig->LCDClockPin, 0);
APP_LOG_DEBUG("C");//for(volatile uint32_t i = 0; i < 1000; i++);
tls_gpio_write(LCDConfig->LCDClockPin, 1);
APP_LOG_DEBUG("D");//for(volatile uint32_t i = 0; i < 1000; i++);
op <<= 1;
}
APP_LOG_DEBUG("E");//for(volatile uint32_t i = 0; i < 1000; i++);
lcd_set_cs(LCDConfig, LCD_RELEASED);
}*/
void lcd_register_draw_finished_cb(LCDConfig_t * const LCDConfig, DrawFinishedCb_t drawFinishedCb, void *arg)
{
if(!LCDConfig) return;
LCDConfig->drawFinishedCb = drawFinishedCb;
LCDConfig->cbArg = arg;
}
void lcd_init(LCDConfig_t * const LCDConfig)
{
if(!LCDConfig) return;
@ -159,9 +263,16 @@ void lcd_init(LCDConfig_t * const LCDConfig)
tls_gpio_cfg(LCDConfig->LCDDataCommandPin, WM_GPIO_DIR_OUTPUT, WM_GPIO_ATTR_FLOATING);
tls_gpio_cfg(LCDConfig->LCDResetPin, WM_GPIO_DIR_OUTPUT, WM_GPIO_ATTR_PULLHIGH);
#if 1
// The clock and data line are driven using the MMC peripheral
tls_io_cfg_set(LCDConfig->LCDClockPin, WM_IO_OPTION2);
tls_io_cfg_set(LCDConfig->LCDDataPin, WM_IO_OPTION2);
#else
tls_gpio_cfg(LCDConfig->LCDClockPin, WM_GPIO_DIR_OUTPUT, WM_GPIO_ATTR_FLOATING);
tls_gpio_write(LCDConfig->LCDClockPin, 1);
tls_gpio_cfg(LCDConfig->LCDDataPin, WM_GPIO_DIR_OUTPUT, WM_GPIO_ATTR_FLOATING);
tls_gpio_write(LCDConfig->LCDDataPin, 1);
#endif
// We set some of the pins default value
lcd_set_backlight(LCDConfig, 0);
@ -171,8 +282,9 @@ void lcd_init(LCDConfig_t * const LCDConfig)
lcd_hardware_reset(LCDConfig);
// Init MMC SDIO peripheral
mmc_sdio_driver_periph_init();
mmc_sdio_driver_periph_init(LCDConfig->drawFinishedCb, LCDConfig->cbArg);
#if 1
#if DISPLAY_CONTROLLER == 0
const u8 *cmd = ili9341_init_seq;
#elif DISPLAY_CONTROLLER == 1
@ -187,46 +299,66 @@ void lcd_init(LCDConfig_t * const LCDConfig)
tls_os_time_delay(*(cmd + 1));
cmd += *cmd + 2;
}
#else
lcd_set_data_command(LCDConfig, LCD_COMMAND);
lcd_set_cs(LCDConfig, LCD_SELECTED);
mmc_sdio_driver_write_one(0x00);
mmc_sdio_driver_write_one(0x80);
lcd_set_cs(LCDConfig, LCD_RELEASED);
tls_os_time_delay(4);
lcd_set_cs(LCDConfig, LCD_SELECTED);
mmc_sdio_driver_write_one(0x08);
mmc_sdio_driver_write_one(0x80);
lcd_set_cs(LCDConfig, LCD_RELEASED);
tls_os_time_delay(4);
lcd_set_cs(LCDConfig, LCD_SELECTED);
mmc_sdio_driver_write_one(0x09);
mmc_sdio_driver_write_one(0x80);
lcd_set_cs(LCDConfig, LCD_RELEASED);
tls_os_time_delay(4);
lcd_set_cs(LCDConfig, LCD_SELECTED);
mmc_sdio_driver_write_one(0x14);
mmc_sdio_driver_write_one(0x80);
tls_os_time_delay(4);
lcd_set_cs(LCDConfig, LCD_RELEASED);
/*
spi_write_9_bit(LCDConfig, false, 0x01);
tls_os_time_delay(2);
spi_write_9_bit(LCDConfig, false, 0x11);
tls_os_time_delay(2);
spi_write_9_bit(LCDConfig, false, 0x3A);spi_write_9_bit(LCDConfig, true, 0x05);
tls_os_time_delay(2);
spi_write_9_bit(LCDConfig, false, 0x36);spi_write_9_bit(LCDConfig, true, 0x00);
tls_os_time_delay(2);
spi_write_9_bit(LCDConfig, false, 0x2A);spi_write_9_bit(LCDConfig, true, 0x00);spi_write_9_bit(LCDConfig, true, 0x00);spi_write_9_bit(LCDConfig, true, 0x00);spi_write_9_bit(LCDConfig, true, 0xF0);
tls_os_time_delay(2);
spi_write_9_bit(LCDConfig, false, 0x2B);spi_write_9_bit(LCDConfig, true, 0x00);spi_write_9_bit(LCDConfig, true, 0x00);spi_write_9_bit(LCDConfig, true, 0x01);spi_write_9_bit(LCDConfig, true, 0x40);
tls_os_time_delay(2);
spi_write_9_bit(LCDConfig, false, 0x21);tls_os_time_delay(2);
spi_write_9_bit(LCDConfig, false, 0x13);tls_os_time_delay(2);
spi_write_9_bit(LCDConfig, false, 0x29);
*/
#endif
lcd_set_backlight(LCDConfig, 1);
}
static void lcd_ram_write_mode(LCDConfig_t * const LCDConfig)
void lcd_draw_rect_frame(LCDConfig_t * const LCDConfig, uint16_t x, uint16_t y, uint16_t width, uint16_t height, uint8_t *data)
{
u8 cmd = 0x2C; // RAMWR
lcd_write_cmd_data_bytes(LCDConfig, &cmd, 1);
}
void lcd_set_window(LCDConfig_t * const LCDConfig, u16 x_start, u16 y_start, u16 x_end, u16 y_end)
{
u8 dataCommand[] =
{
0x2A, x_start>>8, 0x00FF&x_start, x_end>>8, 0x00FF&x_end,
0x2B, y_start>>8, 0x00FF&y_start, y_end>>8, 0x00FF&y_end
};
lcd_write_cmd_data_bytes(LCDConfig, dataCommand, 5);
lcd_write_cmd_data_bytes(LCDConfig, dataCommand + 5, 5);
/*lcd_write_cmd_byte(0x2A);
lcd_write_data_byte(x_start>>8);
lcd_write_data_byte(0x00FF&x_start);
lcd_write_data_byte(x_end>>8);
lcd_write_data_byte(0x00FF&x_end);
lcd_write_cmd_byte(0x2B);
lcd_write_data_byte(y_start>>8);
lcd_write_data_byte(0x00FF&y_start);
lcd_write_data_byte(y_end>>8);
lcd_write_data_byte(0x00FF&y_end);*/
lcd_ram_write_mode(LCDConfig);
}
void lcd_draw_rect_frame(LCDConfig_t * const LCDConfig, u16 x, u16 y, u16 width, u16 height, u8 *data)
{
// First we check if the MMC peripheral is ready to write :
//mmc_sdio_driver_wait_write_dma_ready();
if(!LCDConfig) return;
// We tell the display where we want to draw the frame as well as it's size
lcd_set_window(LCDConfig, x, y, x + width - 1, y + height - 1);
@ -236,49 +368,78 @@ void lcd_draw_rect_frame(LCDConfig_t * const LCDConfig, u16 x, u16 y, u16 width,
// We flush the data to the display
mmc_sdio_driver_write_dma_async((u32*) data, width * height * 2);
/*for(uint32_t i = 0; i < width * height * 2; i++)
{
mmc_sdio_driver_write_one(data[i]);
}*/
/*uint16_t size = width * height * 2, cursor = 0;
u16 writeLen = 0;
for(; size != 0; )
{
if(size > 512)
writeLen = 512;
else
writeLen = size;
mmc_sdio_driver_write(data + cursor, writeLen);
size -= writeLen;
cursor += writeLen;
}*/
}
void lcd_set_backlight(LCDConfig_t * const LCDConfig, u8 brightness)
void lcd_set_backlight(LCDConfig_t * const LCDConfig, uint8_t brightness)
{
if(!LCDConfig) return;
if(brightness)
tls_gpio_write(LCDConfig->LCDPWMBacklightPin, 1);
else
tls_gpio_write(LCDConfig->LCDPWMBacklightPin, 1);
}
void lcd_set_cs(LCDConfig_t * const LCDConfig, LCDSelect_e selected)
{
// CS is active low...
tls_gpio_write(LCDConfig->LCDChipSelectPin, selected);
}
void lcd_set_data_command(LCDConfig_t * const LCDConfig, LCDDataCommand_e dataCommand)
{
tls_gpio_write(LCDConfig->LCDDataCommandPin, dataCommand);
tls_gpio_write(LCDConfig->LCDPWMBacklightPin, 0);
}
void lcd_hardware_reset(LCDConfig_t * const LCDConfig)
{
tls_gpio_write(LCDConfig->LCDResetPin, 0);
tls_os_time_delay(/*pdMS_TO_TICKS(1)*/100);
tls_os_time_delay(1);
tls_gpio_write(LCDConfig->LCDResetPin, 1);
}
static void lcd_write_cmd_data_bytes(LCDConfig_t * const LCDConfig, const uint8_t *cmdAndData, uint32_t dataLengthInBytes)
{
// Select the slave CS line and tell him that he will receive a command !
lcd_set_data_command(LCDConfig, LCD_COMMAND);
lcd_set_cs(LCDConfig, LCD_SELECTED);
mmc_sdio_driver_write_one(*cmdAndData++);
if(dataLengthInBytes >= 2)
{
lcd_set_data_command(LCDConfig, LCD_DATA);
for (size_t i = 0; i < dataLengthInBytes - 1; ++i)
{
mmc_sdio_driver_write_one(*cmdAndData++);
}
}
// We release the slave CS line and tell him that we are in DATA mode
lcd_set_cs(LCDConfig, LCD_RELEASED);
lcd_set_data_command(LCDConfig, LCD_DATA);
}
static void lcd_ram_write_mode(LCDConfig_t * const LCDConfig)
{
lcd_set_data_command(LCDConfig, LCD_COMMAND);
lcd_set_cs(LCDConfig, LCD_SELECTED);
mmc_sdio_driver_write_one(0x2C);
lcd_set_cs(LCDConfig, LCD_RELEASED);
lcd_set_data_command(LCDConfig, LCD_DATA);
}
static void lcd_set_window(LCDConfig_t * const LCDConfig, uint16_t x_start, uint16_t y_start, uint16_t x_end, uint16_t y_end)
{
uint8_t dataCommand[] =
{
0x2A, x_start>>8, 0x00FF&x_start, x_end>>8, 0x00FF&x_end,
0x2B, y_start>>8, 0x00FF&y_start, y_end>>8, 0x00FF&y_end
};
lcd_write_cmd_data_bytes(LCDConfig, dataCommand, 5);
lcd_write_cmd_data_bytes(LCDConfig, dataCommand + 5, 5);
lcd_ram_write_mode(LCDConfig);
}
static void lcd_set_cs(LCDConfig_t * const LCDConfig, LCDSelect_e selected)
{
// CS is active low...
tls_gpio_write(LCDConfig->LCDChipSelectPin, selected);
}
static void lcd_set_data_command(LCDConfig_t * const LCDConfig, LCDDataCommand_e dataCommand)
{
tls_gpio_write(LCDConfig->LCDDataCommandPin, dataCommand);
}

View File

@ -0,0 +1,106 @@
#ifndef LCD_H
#define LCD_H
#include "wm_include.h"
/* Used SOC : W800 or W801 */
#define W800
/* Display drive controller */
#define ILI9341 0
#define ST7789V 1
#define DISPLAY_CONTROLLER ILI9341
//#define DISPLAY_CONTROLLER ST7789V
/* Display properties */
#define LCD_PIXEL_WIDTH 240
#define LCD_PIXEL_HEIGHT 240
typedef enum LCDDataCommand
{
LCD_COMMAND = 0,
LCD_DATA = 1
} LCDDataCommand_e;
typedef enum LCDSelect
{
LCD_SELECTED = 0,
LCD_RELEASED = 1
} LCDSelect_e;
/**
* @brief
*
*/
typedef void (*DrawFinishedCb_t)(void *arg);
/**
* @brief
*
*/
typedef struct LCDConfig
{
enum tls_io_name LCDPWMBacklightPin;
enum tls_io_name LCDClockPin;
enum tls_io_name LCDDataPin;
enum tls_io_name LCDChipSelectPin;
enum tls_io_name LCDDataCommandPin;
enum tls_io_name LCDResetPin;
DrawFinishedCb_t drawFinishedCb;
void *cbArg;
} LCDConfig_t;
/**
* @brief Initializes the LCDConfig object to known values
* Must be called before using any other LCD Driver API functions
*
* @param LCDConfig a pointer a user allocated LCDConfig_t structure
*/
void lcd_config_init(LCDConfig_t * const LCDConfig);
/**
* @brief Registers a function called by the driver once it is finished drawing on the screen and is ready for the next drawing.
* Usually called once the DMA engine is done with the transfer.
* /!\ MUST BE CALLED BEFORE lcd_init FUNCTION
*
* @param LCDConfig a pointer a user allocated LCDConfig_t structure
* @param drawFinishedCb the function to register of the form : void myFunc(void *arg)
* @param arg a pointer to an optional argument passed to the callback function
*/
void lcd_register_draw_finished_cb(LCDConfig_t * const LCDConfig, DrawFinishedCb_t drawFinishedCb, void *arg);
/**
* @brief Initializes IOs using the configured LCDConfig object and the LCD display
*
* @param LCDConfig a pointer a user allocated LCDConfig_t structure
*/
void lcd_init(LCDConfig_t * const LCDConfig);
/**
* @brief Writes the frame to display's internal RAM
*
* @param LCDConfig a pointer a user allocated LCDConfig_t structure
* @param x
* @param y
* @param width
* @param height
* @param data
*/
void lcd_draw_rect_frame(LCDConfig_t * const LCDConfig, uint16_t x, uint16_t y, uint16_t width, uint16_t height, uint8_t *data);
/**
* @brief Sets the backlight to the specified brightness value
*
* @param LCDConfig a pointer a user allocated LCDConfig_t structure
* @param brightness a value from 0 (backlight off) to 255 backlight fully on.
*/
void lcd_set_backlight(LCDConfig_t * const LCDConfig, uint8_t brightness);
/**
* @brief Issues a hardware reset of the lcd display
*
* @param LCDConfig a pointer a user allocated LCDConfig_t structure
*/
void lcd_hardware_reset(LCDConfig_t * const LCDConfig);
#endif //LCD_H

View File

@ -0,0 +1,119 @@
#include <string.h>
#include "wm_sdio_host.h"
#include "wm_include.h"
#include "app_log.h"
#include "FreeRTOS.h"
#include "lvgl.h"
#include "mmc_sdio.h"
static uint8_t sdio_spi_dma_channel = 0xFF;
static DMATransferDoneCb_t DMATransferDoneFuncCb = NULL;
static void *DMATransferDoneArg = NULL;
void mmc_sdio_driver_periph_init(DMATransferDoneCb_t DMATransferDoneCb, void *arg)
{
tls_open_peripheral_clock(TLS_PERIPHERAL_TYPE_SDIO_MASTER);
// W800 register manual page 67
tls_bitband_write(HR_CLK_RST_CTL, 27, 0);
tls_bitband_write(HR_CLK_RST_CTL, 27, 1);
// Wait until reset is released
while (tls_bitband_read(HR_CLK_RST_CTL, 27) == 0);
tls_sys_clk sysclk;
tls_sys_clk_get(&sysclk);
// W800 register manual page 179
SDIO_HOST->MMC_CARDSEL = 0xC0 | (sysclk.cpuclk / 2 - 1); // enable module, enable mmcclk
APP_LOG_DEBUG("cpu clock : %u, mmc_cardsel reg val,addr : %02X, %p ", sysclk.cpuclk, SDIO_HOST->MMC_CARDSEL, &SDIO_HOST->MMC_CARDSEL);
#if (1)
/* Clock frequency is 1/2 of system clock */
// auto transfer, mmc mode.
SDIO_HOST->MMC_CTL = 0x542 | (0 << 3);
#else
/* Clock frequency is 1/4 of system clock */
SDIO_HOST->MMC_CTL = 0x542 | (0b001 << 3);
#endif
SDIO_HOST->MMC_INT_MASK = 0x100; //unmask sdio data interrupt.
SDIO_HOST->MMC_CRCCTL = 0x00;
SDIO_HOST->MMC_TIMEOUTCNT = 0;
SDIO_HOST->MMC_BYTECNTL = 0;
//Inverse SPI clock polarity for ST7789 screen
//SDIO_HOST->MMC_IO_MBCTL |= (1 << 3);
/* Init callback */
DMATransferDoneFuncCb = DMATransferDoneCb;
DMATransferDoneArg = arg;
}
static void mmc_sdio_driver_dma_callback(void *arg)
{
(void)arg;
tls_dma_free(sdio_spi_dma_channel);
/* Let's call the user DMATransferDoneFuncCb function if any */
if(DMATransferDoneFuncCb)
{
DMATransferDoneFuncCb(DMATransferDoneArg);
}
}
void mmc_sdio_driver_write_dma_async(uint32_t *data, uint32_t dataLengthInBytes)
{
if (dataLengthInBytes < 4)
{
APP_LOG_ERROR("send err, data length < 4");
return;
}
if (dataLengthInBytes % 4)
{
// DMA send length must be a multiple of 4
dataLengthInBytes -= dataLengthInBytes % 4;
// printf("Len not aligned\n");
}
/* Wait for MMC device to be ready to send the data */
while (SDIO_HOST->MMC_IO & 0x01);
SDIO_HOST->BUF_CTL = 0x4000; // disable dma,
sdio_spi_dma_channel = tls_dma_request(0, 0);
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_OFF;
DMA_SRCADDR_REG(sdio_spi_dma_channel) = (unsigned int)data;
DMA_DESTADDR_REG(sdio_spi_dma_channel) = (unsigned int)SDIO_HOST->DATA_BUF;
DMA_CTRL_REG(sdio_spi_dma_channel) = DMA_CTRL_SRC_ADDR_INC | DMA_CTRL_DATA_SIZE_WORD | (dataLengthInBytes << 8);
DMA_MODE_REG(sdio_spi_dma_channel) = DMA_MODE_SEL_SDIOHOST | DMA_MODE_HARD_MODE;
tls_dma_irq_register(sdio_spi_dma_channel, &(mmc_sdio_driver_dma_callback), NULL, TLS_DMA_IRQ_TRANSFER_DONE);
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_ON;
SDIO_HOST->BUF_CTL = 0xC20; // enable dma, write sd card
SDIO_HOST->MMC_INT_SRC |= 0x7ff; // clear all firstly
SDIO_HOST->MMC_BYTECNTL = dataLengthInBytes;
SDIO_HOST->MMC_IO = 0x01;
}
void mmc_sdio_driver_write_one(uint8_t data)
{
SDIO_HOST->BUF_CTL = 0x4820;
SDIO_HOST->DATA_BUF[0] = (uint32_t)data;
SDIO_HOST->MMC_BYTECNTL = 1U;
/* Start the transfer */
SDIO_HOST->MMC_IO = 0x01;
/* Wait for MMC device to be done sending the data */
while (SDIO_HOST->MMC_IO & 0x01);
}
void mmc_sdio_driver_write(const uint8_t *data, uint16_t dataLengthInBytes)
{
SDIO_HOST->BUF_CTL = 0x4820;
memcpy((void *)SDIO_HOST->DATA_BUF, (void *)data, dataLengthInBytes);
SDIO_HOST->MMC_BYTECNTL = dataLengthInBytes;
/* Start the transfer */
SDIO_HOST->MMC_IO = 0x01;
/* Wait for MMC device to be done sending the data */
while (SDIO_HOST->MMC_IO & 0x01);
}

View File

@ -0,0 +1,46 @@
/**
* MMC peripheral used as DMA capable SPI.
*/
#ifndef MMC_SDIO_H
#define MMC_SDIO_H
#include "wm_include.h"
typedef void (*DMATransferDoneCb_t)(void *arg);
/**
* @brief Inits the MMC peripheral in SDIO mode
*
* @param DMATransferDoneCb a function that will be called when the DMA transfer done IRQ is called
* @param arg a pointer to an optional argument passed to the callback function
*/
void mmc_sdio_driver_periph_init(DMATransferDoneCb_t DMATransferDoneCb, void *arg);
/**
* @brief Sends data to the slave using DMA asynchronously.
*
* @param data a pointer to a buffer containing the data to transfer
* @param dataLengthInBytes the size in bytes of the data to transfer.
* Maximum length is 65535 bytes.
*/
void mmc_sdio_driver_write_dma_async(uint32_t *data, u32 dataLengthInBytes);
/**
* @brief Sends one byte of data to the slave
* This function blocks until the data has been sent on the bus.
*
* @param data the byte to send.
*/
void mmc_sdio_driver_write_one(uint8_t data);
/**
* @brief Sends data to the slave without using DMA.
* This function blocks until all the bytes were sent.
*
* @param data a pointer to a buffer containing the data to transfer.
* @param dataLengthInBytes the size in bytes of the data to transfer.
* Maximum length is 512 bytes.
*/
void mmc_sdio_driver_write(const uint8_t *data, uint16_t dataLengthInBytes);
#endif //MMC_SDIO_H

View File

@ -3,7 +3,8 @@ sinclude $(TOP_DIR)/tools/w800/conf.mk
ifndef PDIR
GEN_LIBS = libusergfx$(LIB_EXT)
COMPONENTS_libusergfx = assets/libusergfxassets$(LIB_EXT)
COMPONENTS_libusergfx = assets/libusergfxassets$(LIB_EXT) \
../drivers/libdrivers$(LIB_EXT)
endif
#DEFINES +=

View File

@ -13,13 +13,18 @@
static lv_color_t lvgl_draw_buffer[LVGL_GFX_BUFFER_SIZE];
static lv_disp_draw_buf_t lvgl_draw_buffer_dsc;
lv_disp_drv_t display_driver;
static lv_disp_drv_t display_driver;
static LCDConfig_t LCDConfig;
static void lvgl_display_flush_cb(lv_disp_drv_t *disp_drv, const lv_area_t *area, lv_color_t *color_p)
{
lcd_draw_rect_frame(&LCDConfig, area->x1, area->y1, area->x2 - area->x1 + 1, area->y2 - area->y1 + 1, (uint8_t *)color_p);
//lv_disp_flush_ready(disp_drv);
/* lv_disp_flush_ready is called in the LCD driver registered callback */
}
static void lcd_draw_finished_cb(void *arg)
{
lv_disp_flush_ready((lv_disp_drv_t *)arg);
}
struct tm temptm = {0};
@ -74,6 +79,7 @@ void gfx_task(void *param)
/* Initialize the LCD display */
lcd_config_init(&LCDConfig);
lcd_register_draw_finished_cb(&LCDConfig, &(lcd_draw_finished_cb), &display_driver);
#if defined(W800)
LCDConfig.LCDPWMBacklightPin = WM_IO_PA_07;
@ -99,24 +105,26 @@ void gfx_task(void *param)
lv_port_indev_init();
/*watch_face_init(&watchFace);
watch_face_init(&watchFace);
menu_screen_init(&menuScreen);
watch_face_register_cb(&watchFace, &(date_time_cb));
watch_face_create(&watchFace);
lv_scr_load(watchFace.display);*/
//lv_demo_widgets();
//lv_demo_benchmark();
lv_demo_stress();
lv_scr_load(watchFace.display);
uint8_t aliveCounter = 0;
for(;;)
{
lv_timer_handler();
tls_os_time_delay(5);
/* static u32 counter = 0;
if(counter++ % 200 == 0)
APP_LOG_DEBUG("GFX ALIVE");*/
if(++aliveCounter % 200 == 0)
{
APP_LOG_DEBUG("GFX thread");
aliveCounter = 0;
}
}
}

View File

@ -1,62 +0,0 @@
#ifndef LCD_H
#define LCD_H
#include "wm_include.h"
/* Used SOC : W800 or W801 */
#define W800
/* Display drive controller */
#define ILI9341 0
#define ST7789V 1
#define DISPLAY_CONTROLLER ILI9341
//#define DISPLAY_CONTROLLER ST7789V
/* Display properties */
#define LCD_PIXEL_WIDTH 240
#define LCD_PIXEL_HEIGHT 240
typedef enum LCDDataCommand
{
LCD_COMMAND = 0,
LCD_DATA = 1
} LCDDataCommand_e;
typedef enum LCDSelect
{
LCD_SELECTED = 0,
LCD_RELEASED = 1
} LCDSelect_e;
typedef struct LCDConfig
{
enum tls_io_name LCDPWMBacklightPin;
enum tls_io_name LCDClockPin;
enum tls_io_name LCDDataPin;
enum tls_io_name LCDChipSelectPin;
enum tls_io_name LCDDataCommandPin;
enum tls_io_name LCDResetPin;
} LCDConfig_t;
/* Initializes the LCDConfig object to known values */
void lcd_config_init(LCDConfig_t * const LCDConfig);
/* Initializes IOs using the configured LCDConfig object and the LCD display */
void lcd_init(LCDConfig_t * const LCDConfig);
/* Sets the LCD write window area */
void lcd_set_window(LCDConfig_t * const LCDConfig, u16 x_start, u16 y_start, u16 x_end, u16 y_end);
/* Writes the frame to display's internal RAM */
void lcd_draw_rect_frame(LCDConfig_t * const LCDConfig, u16 x, u16 y, u16 width, u16 height, u8 *data);
/* Sets the backlight to the specified brightness value */
void lcd_set_backlight(LCDConfig_t * const LCDConfig, u8 brightness);
/* Sets the chip select pin */
void lcd_set_cs(LCDConfig_t * const LCDConfig, LCDSelect_e selected);
/* Sets the data/command pin state */
void lcd_set_data_command(LCDConfig_t * const LCDConfig, LCDDataCommand_e dataCommand);
/* Issues a reset of the lcd display */
void lcd_hardware_reset(LCDConfig_t * const LCDConfig);
#endif //LCD_H

View File

@ -1,76 +0,0 @@
#include "lv_port_disp.h"
// #define USE_PSRAM
#ifdef USE_PSRAM
#include "psram.h"
static lv_color_t *lvgl_draw_buff1 = NULL;
#if LVGL_PORT_USE_DOUBLE_BUFF
static lv_color_t *lvgl_draw_buff2 = NULL;
#endif
#else
static lv_color_t lvgl_draw_buff1[LVGL_PORT_BUFF_SIZE];
#if LVGL_PORT_USE_DOUBLE_BUFF
static lv_color_t lvgl_draw_buff2[LVGL_PORT_BUFF_SIZE];
#endif
#endif
static void disp_flush(lv_disp_drv_t *disp_drv, const lv_area_t *area, lv_color_t *color_p)
{
/* 等待上次传输完成 */
#if !USE_SPI
bsp_lcd_draw_rect_wait();
#endif
/* 启动新的传输 */
bsp_lcd_draw_rect(area->x1,area->y1,area->x2 - area->x1 + 1,area->y2 - area->y1 + 1,(uint8_t *)color_p);
/* 通知lvgl传输已完成 */
lv_disp_flush_ready(disp_drv);
}
void lv_port_disp_init()
{
/* 向lvgl注册缓冲区 */
static lv_disp_draw_buf_t draw_buf_dsc; //需要全程生命周期,设置为静态变量
#ifdef USE_PSRAM
lvgl_draw_buff1 = dram_heap_malloc(LVGL_PORT_BUFF_SIZE*2);
if(lvgl_draw_buff1 == NULL){
printf("---> malloc lvgl_draw_buff1 err\n");
return;
}
#if LVGL_PORT_USE_DOUBLE_BUFF
lvgl_draw_buff2 = dram_heap_malloc(LVGL_PORT_BUFF_SIZE*2);
if(lvgl_draw_buff2 == NULL){
printf("---> malloc lvgl_draw_buff2 err\n");
return;
}
#endif
#endif
#if LVGL_PORT_USE_DOUBLE_BUFF
lv_disp_draw_buf_init(&draw_buf_dsc, lvgl_draw_buff1, lvgl_draw_buff2, LVGL_PORT_BUFF_SIZE);
#else
lv_disp_draw_buf_init(&draw_buf_dsc, lvgl_draw_buff1, NULL, LVGL_PORT_BUFF_SIZE);
#endif
/* 创建并初始化用于在lvgl中注册显示设备的结构 */
static lv_disp_drv_t disp_drv;
lv_disp_drv_init(&disp_drv); //使用默认值初始化该结构
/* 设置屏幕分辨率 */
disp_drv.hor_res = BSP_LCD_X_PIXELS;
disp_drv.ver_res = BSP_LCD_Y_PIXELS;
disp_drv.rotated = LV_DISP_ROT_180;
/* 初始化LCD总线 */
bsp_lcd_init();
/* 设置显示矩形函数,用于将矩形缓冲区刷新到屏幕上 */
disp_drv.flush_cb = disp_flush;
/* 设置缓冲区 */
disp_drv.draw_buf = &draw_buf_dsc;
/* 注册显示设备 */
lv_disp_drv_register(&disp_drv);
}

View File

@ -1,14 +0,0 @@
#ifndef __LV_PORT_DISP_H__
#define __LV_PORT_DISP_H__
#include "lcd_dirty.h"
#include "lvgl.h"
/* lvgl缓冲区大小单位为像素数 */
#define LVGL_PORT_BUFF_SIZE (BSP_LCD_X_PIXELS*BSP_LCD_Y_PIXELS/10) // 1/10屏幕分辨率
/* 设置是否开启双缓冲 */
#define LVGL_PORT_USE_DOUBLE_BUFF 0
void lv_port_disp_init(void);
#endif

View File

@ -1,22 +0,0 @@
#include "lv_port_tick.h"
#include "wm_timer.h"
static void tick_timer_irq(u8 *arg)
{
lv_tick_inc(LV_TICK_PERIOD_MS);
}
void lv_create_tick(void)
{
u8 timer_id;
struct tls_timer_cfg timer_cfg;
timer_cfg.unit = TLS_TIMER_UNIT_MS;
timer_cfg.timeout = 1;
timer_cfg.is_repeat = 1;
timer_cfg.callback = (tls_timer_irq_callback)tick_timer_irq;
timer_cfg.arg = NULL;
timer_id = tls_timer_create(&timer_cfg);
tls_timer_start(timer_id);
// printf("timer start\n");
}

View File

@ -1,9 +0,0 @@
#ifndef __LV_PORT_TICK_H__
#define __LV_PORT_TICK_H__
#include "lvgl.h"
#define LV_TICK_PERIOD_MS 1
void lv_create_tick(void);
#endif

View File

@ -1,189 +0,0 @@
#include <string.h>
#include "wm_sdio_host.h"
#include "wm_include.h"
#include "app_log.h"
#include "FreeRTOS.h"
#include "lvgl.h"
static u8 sdio_spi_dma_channel = 0xFF;
static u32 sdio_spi_dma_buf_size = 0;
static u32 *sdio_spi_dma_buf_addr = NULL;
static u32 *sdio_spi_dma_temp_buf = NULL;
static bool sdio_spi_dma_ready = true;
static tls_os_sem_t *sdio_spi_dma_ready_flag = NULL;
void mmc_sdio_driver_periph_init(void)
{
tls_open_peripheral_clock(TLS_PERIPHERAL_TYPE_SDIO_MASTER);
// W800 register manual page 67
tls_bitband_write(HR_CLK_RST_CTL, 27, 0);
tls_bitband_write(HR_CLK_RST_CTL, 27, 1);
// Wait until reset is released
while (tls_bitband_read(HR_CLK_RST_CTL, 27) == 0);
tls_sys_clk sysclk;
tls_sys_clk_get(&sysclk);
// W800 register manual page 179
SDIO_HOST->MMC_CARDSEL = 0xC0 | (sysclk.cpuclk / 2 - 1); // enable module, enable mmcclk
APP_LOG_DEBUG("cpu clock : %u, mmc_cardsel reg val,addr : %02X, %p ", sysclk.cpuclk, SDIO_HOST->MMC_CARDSEL, &SDIO_HOST->MMC_CARDSEL);
#if (0) // Clock frequency is 1/2 of system clock
SDIO_HOST->MMC_CTL = 0x542 | 0 << 3; // auto transfer, mmc mode.
#else /* Clock frequency is 1/4 of system clock */
SDIO_HOST->MMC_CTL = 0x542 | (0b000 << 3); // 001
#endif
SDIO_HOST->MMC_INT_MASK = 0x100; //unmask sdio data interrupt.
SDIO_HOST->MMC_CRCCTL = 0x00;
SDIO_HOST->MMC_TIMEOUTCNT = 0;
SDIO_HOST->MMC_BYTECNTL = 0;
// Create a semaphore
tls_os_sem_create(&sdio_spi_dma_ready_flag, 1);
}
static void mmc_sdio_driver_dma_callback(void *arg)
{
(void)arg;
// printf("sdio_dma_callback\n");
// printf("--->buf_size:%d\n", sdio_spi_dma_buf_size);
/*if(sdio_spi_dma_buf_size > 0)
{
sdio_spi_dma_buf_addr += 65532/4;
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_OFF;
DMA_SRCADDR_REG(sdio_spi_dma_channel) = (unsigned int)sdio_spi_dma_buf_addr;
DMA_DESTADDR_REG(sdio_spi_dma_channel) = (unsigned int)SDIO_HOST->DATA_BUF;
u32 bufsize = sdio_spi_dma_buf_size;
if(bufsize > 65532){
bufsize = 65532;
}
sdio_spi_dma_buf_size -= bufsize;
DMA_CTRL_REG(sdio_spi_dma_channel) = DMA_CTRL_SRC_ADDR_INC | DMA_CTRL_DATA_SIZE_WORD | (bufsize << 8);
DMA_MODE_REG(sdio_spi_dma_channel) = DMA_MODE_SEL_SDIOHOST | DMA_MODE_HARD_MODE;
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_ON;
SDIO_HOST->BUF_CTL = 0xC20; //enable dma, write sd card
SDIO_HOST->MMC_INT_SRC |= 0x7ff; // clear all firstly
SDIO_HOST->MMC_BYTECNTL = bufsize;
SDIO_HOST->MMC_IO = 0x01;
}
else*/
{
tls_dma_free(sdio_spi_dma_channel);
extern lv_disp_drv_t display_driver;
lv_disp_flush_ready(&display_driver);
//tls_os_sem_release(sdio_spi_dma_ready_flag);
//tls_mem_free(sdio_spi_dma_temp_buf);
//free(sdio_spi_dma_temp_buf);
// 等待信号量 直到上一次DMA数据发送完成
// sdio_spi_dma_ready = true;
// printf("--->tls_os_sem_release [%s:%d]\r\n",__func__,__LINE__);
}
}
//static u32 tmpbuff[5760];
void mmc_sdio_driver_write_dma_async(u32 *data, u32 dataLengthInBytes)
{
// Wait for the semaphore until the last DMA data transmission is completed
// printf("--->tls_os_sem_acquire [%s:%d]\r\n",__func__,__LINE__);
/*tls_os_sem_acquire(sdio_spi_dma_ready_flag, 0);
sdio_spi_dma_ready = false;*/
// printf("--->%s:%d\r\n",__func__,__LINE__);
// printf("--->w buf_size:%d\n", len);
if (dataLengthInBytes < 4)
{
printf("send err\n");
return;
}
if (dataLengthInBytes % 4)
{
// len += (4 - (len%4)); // DMA send length must be a multiple of 4
dataLengthInBytes -= dataLengthInBytes % 4;
// printf("Len not aligned\n");
}
//sdio_spi_dma_temp_buf = tls_mem_alloc(dataLengthInBytes);
/*sdio_spi_dma_temp_buf = malloc(dataLengthInBytes);
if (sdio_spi_dma_temp_buf == NULL)
{
printf("---> malloc sdio_spi_dma_temp_buf err\n");
return;
}
memcpy(sdio_spi_dma_temp_buf, data, dataLengthInBytes);
sdio_spi_dma_buf_addr = sdio_spi_dma_temp_buf;*/
//memcpy(tmpbuff, data, dataLengthInBytes);
sdio_spi_dma_buf_size = dataLengthInBytes;
while (1)
{
if ((SDIO_HOST->MMC_IO & 0x01) == 0x00)
break;
}
SDIO_HOST->BUF_CTL = 0x4000; // disable dma,
sdio_spi_dma_channel = tls_dma_request(0, 0);
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_OFF;
DMA_SRCADDR_REG(sdio_spi_dma_channel) = (unsigned int)data;//sdio_spi_dma_buf_addr;
DMA_DESTADDR_REG(sdio_spi_dma_channel) = (unsigned int)SDIO_HOST->DATA_BUF;
/*u32 bufsize = sdio_spi_dma_buf_size;
if (bufsize > 65532)
{
bufsize = 65532;
}
sdio_spi_dma_buf_size -= bufsize;*/
DMA_CTRL_REG(sdio_spi_dma_channel) = DMA_CTRL_SRC_ADDR_INC | DMA_CTRL_DATA_SIZE_WORD | (sdio_spi_dma_buf_size << 8);
DMA_MODE_REG(sdio_spi_dma_channel) = DMA_MODE_SEL_SDIOHOST | DMA_MODE_HARD_MODE;
tls_dma_irq_register(sdio_spi_dma_channel, &(mmc_sdio_driver_dma_callback), NULL, TLS_DMA_IRQ_TRANSFER_DONE);
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_ON;
SDIO_HOST->BUF_CTL = 0xC20; // enable dma, write sd card
SDIO_HOST->MMC_INT_SRC |= 0x7ff; // clear all firstly
SDIO_HOST->MMC_BYTECNTL = sdio_spi_dma_buf_size;//bufsize;
SDIO_HOST->MMC_IO = 0x01;
sdio_spi_dma_buf_size = 0;
}
void mmc_sdio_driver_write_one(u8 byte)
{
SDIO_HOST->BUF_CTL = 0x4820;
SDIO_HOST->DATA_BUF[0] = byte;
SDIO_HOST->MMC_BYTECNTL = 1;
SDIO_HOST->MMC_IO = 0x01;
while (1) {
if ((SDIO_HOST->MMC_IO & 0x01) == 0x00)
break;
}
}
void mmc_sdio_driver_write(const u8 * bytes, u16 len)
{
SDIO_HOST->BUF_CTL = 0x4820;
memcpy(SDIO_HOST->DATA_BUF, bytes, len);
SDIO_HOST->MMC_BYTECNTL = len;
SDIO_HOST->MMC_IO = 0x01;
while (SDIO_HOST->MMC_IO & 0x01);
}
void mmc_sdio_driver_wait_write_dma_ready(void)
{
while(!sdio_spi_dma_ready)
{
// Yield some time to FreeRTOS to schedule an other task meanwhile
tls_os_time_delay(pdMS_TO_TICKS(1));
}
}

View File

@ -1,20 +0,0 @@
#ifndef MMC_SDIO_H
#define MMC_SDIO_H
#include "wm_include.h"
/* Inits the MMC peripheral in SDIO mode */
void mmc_sdio_driver_periph_init(void);
/* Sends the data to the slave using DMA in an asynchronous manner */
void mmc_sdio_driver_write_dma_async(u32 *data, u32 dataLengthInBytes);
/* Sends one byte of data to the slave */
void mmc_sdio_driver_write_one(u8 byte);
void mmc_sdio_driver_write(const u8 * bytes, u16 len);
/* Blocks the current task until the write through DMA is available again */
void mmc_sdio_driver_wait_write_dma_ready(void);
#endif //MMC_SDIO_H

View File

@ -1,236 +0,0 @@
#include "sdio_spi_driver.h"
#include "wm_sdio_host.h"
#include "wm_cpu.h"
#include "wm_dma.h"
#include "wm_pmu.h"
#include <string.h>
#include "sdio_spi_driver.h"
// #define USE_PSRAM
#ifdef USE_PSRAM
#include "psram.h"
#endif
static u8 sdio_spi_dma_channel = 0xFF;
static u32 sdio_spi_dma_buf_size = 0;
static u32 *sdio_spi_dma_buf_addr = NULL;
static u32 *sdio_spi_dma_temp_buf = NULL;
static tls_os_sem_t *sdio_spi_dma_ready_flag = NULL;
static bool sdio_spi_dma_ready = true;
void init_sdio_spi_mode()
{
// tls_io_cfg_set(WM_IO_PA_09, WM_IO_OPTION1);/*CK*/
// tls_io_cfg_set(WM_IO_PA_10, WM_IO_OPTION1);/*CMD*/
tls_open_peripheral_clock(TLS_PERIPHERAL_TYPE_SDIO_MASTER);
tls_bitband_write(HR_CLK_RST_CTL, 27, 0);
tls_bitband_write(HR_CLK_RST_CTL, 27, 1);
while (tls_bitband_read(HR_CLK_RST_CTL, 27) == 0);
tls_sys_clk sysclk;
tls_sys_clk_get(&sysclk);
SDIO_HOST->MMC_CARDSEL = 0xC0 | (sysclk.cpuclk / 2 - 1); // enable module, enable mmcclk
printf("SDIO_HOST : %02X\ncpu clk : %d\n", SDIO_HOST->MMC_CARDSEL, sysclk.cpuclk);
#if (0) // 时钟频率为系统时钟 1/2
SDIO_HOST->MMC_CTL = 0x542 | 0 << 3;// auto transfer, mmc mode.
#else // 时钟频率为系统时钟 1/4
SDIO_HOST->MMC_CTL = 0x542 | (0b001 << 3); // 001
#endif
SDIO_HOST->MMC_INT_MASK = 0x100; // unmask sdio data interrupt.
SDIO_HOST->MMC_CRCCTL = 0x00;
SDIO_HOST->MMC_TIMEOUTCNT = 0;
SDIO_HOST->MMC_BYTECNTL = 0;
// 创建信号量
tls_os_sem_create(&sdio_spi_dma_ready_flag, 1);
}
static int sdio_spi_dma_cfg(u32*mbuf,u32 bufsize,u8 dir)
{
int ch;
u32 addr_inc = 0;
ch = tls_dma_request(0, 0);
DMA_CHNLCTRL_REG(ch) = DMA_CHNL_CTRL_CHNL_OFF;
if(dir)
{
DMA_SRCADDR_REG(ch) = (unsigned int)mbuf;
DMA_DESTADDR_REG(ch) = (unsigned int)SDIO_HOST->DATA_BUF;
addr_inc = DMA_CTRL_SRC_ADDR_INC;
}
else
{
DMA_SRCADDR_REG(ch) = (unsigned int)SDIO_HOST->DATA_BUF;
DMA_DESTADDR_REG(ch) = (unsigned int)mbuf;
addr_inc =DMA_CTRL_DEST_ADDR_INC;
}
DMA_CTRL_REG(ch) = addr_inc | DMA_CTRL_DATA_SIZE_WORD | (bufsize << 8);
DMA_MODE_REG(ch) = DMA_MODE_SEL_SDIOHOST | DMA_MODE_HARD_MODE;
// tls_dma_irq_register(ch, (void (*))sdio_dma_callback, NULL, TLS_DMA_IRQ_TRANSFER_DONE);
DMA_CHNLCTRL_REG(ch) = DMA_CHNL_CTRL_CHNL_ON;
return ch;
}
void sdio_spi_put(u8 d)
{
SDIO_HOST->BUF_CTL = 0x4820;
SDIO_HOST->DATA_BUF[0] = d;
SDIO_HOST->MMC_BYTECNTL = 1;
SDIO_HOST->MMC_IO = 0x01;
while (1) {
if ((SDIO_HOST->MMC_IO & 0x01) == 0x00)
break;
}
}
void write_sdio_spi_dma(u32* data, u32 len)
{
while(1){
if ((SDIO_HOST->MMC_IO & 0x01) == 0x00)
break;
}
u32 offset=0;
while(len>0){
int datalen=len;
if(len>0xfffc)
datalen=0xfffc;
len-=datalen;
SDIO_HOST->BUF_CTL = 0x4000; //disable dma,
sdio_spi_dma_channel = sdio_spi_dma_cfg((u32 *) data+offset, datalen, 1);
SDIO_HOST->BUF_CTL = 0xC20; //enable dma, write sd card
SDIO_HOST->MMC_INT_SRC |= 0x7ff; // clear all firstly
SDIO_HOST->MMC_BYTECNTL = datalen;
SDIO_HOST->MMC_IO = 0x01;
offset+=datalen/4;
while(1){
if ((SDIO_HOST->BUF_CTL & 0x400) == 0x00)
break;
}
tls_dma_free(sdio_spi_dma_channel);
}
}
static void sdio_dma_callback(void)
{
// printf("sdio_dma_callback\n");
// printf("--->buf_size:%d\n", sdio_spi_dma_buf_size);
if(sdio_spi_dma_buf_size > 0)
{
sdio_spi_dma_buf_addr += 65532/4;
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_OFF;
DMA_SRCADDR_REG(sdio_spi_dma_channel) = (unsigned int)sdio_spi_dma_buf_addr;
DMA_DESTADDR_REG(sdio_spi_dma_channel) = (unsigned int)SDIO_HOST->DATA_BUF;
u32 bufsize = sdio_spi_dma_buf_size;
if(bufsize > 65532){
bufsize = 65532;
}
sdio_spi_dma_buf_size -= bufsize;
DMA_CTRL_REG(sdio_spi_dma_channel) = DMA_CTRL_SRC_ADDR_INC | DMA_CTRL_DATA_SIZE_WORD | (bufsize << 8);
DMA_MODE_REG(sdio_spi_dma_channel) = DMA_MODE_SEL_SDIOHOST | DMA_MODE_HARD_MODE;
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_ON;
SDIO_HOST->BUF_CTL = 0xC20; //enable dma, write sd card
SDIO_HOST->MMC_INT_SRC |= 0x7ff; // clear all firstly
SDIO_HOST->MMC_BYTECNTL = bufsize;
SDIO_HOST->MMC_IO = 0x01;
}
else
{
tls_dma_free(sdio_spi_dma_channel);
tls_os_sem_release(sdio_spi_dma_ready_flag);
#ifdef USE_PSRAM
dram_heap_free(sdio_spi_dma_temp_buf);
#else
tls_mem_free(sdio_spi_dma_temp_buf);
#endif
// 等待信号量 直到上一次DMA数据发送完成
sdio_spi_dma_ready = true;
// printf("--->tls_os_sem_release [%s:%d]\r\n",__func__,__LINE__);
}
}
void wait_sdio_spi_dma_ready()
{
while(!sdio_spi_dma_ready){
tls_os_time_delay(1);
}
}
void write_sdio_spi_dma_async(u32* data, u32 len)
{
// 等待信号量 直到上一次DMA数据发送完成
// printf("--->tls_os_sem_acquire [%s:%d]\r\n",__func__,__LINE__);
tls_os_sem_acquire(sdio_spi_dma_ready_flag, 0);
sdio_spi_dma_ready = false;
// printf("--->%s:%d\r\n",__func__,__LINE__);
// printf("--->w buf_size:%d\n", len);
if(len<4){
printf("send err\n");
return;
}
if(len%4)
{
//len += (4 - (len%4)); // dma发送长度必须为4的倍数
len -= len%4;
//printf("Len not aligned\n");
}
#ifdef USE_PSRAM
sdio_spi_dma_temp_buf = dram_heap_malloc(len);
#else
sdio_spi_dma_temp_buf = tls_mem_alloc(len);
#endif
if(sdio_spi_dma_temp_buf == NULL){
printf("---> malloc sdio_spi_dma_temp_buf err\n");
return;
}
memcpy(sdio_spi_dma_temp_buf, data, len);
sdio_spi_dma_buf_addr = sdio_spi_dma_temp_buf;
sdio_spi_dma_buf_size = len;
while(1){
if ((SDIO_HOST->MMC_IO & 0x01) == 0x00)
break;
}
SDIO_HOST->BUF_CTL = 0x4000; //disable dma,
sdio_spi_dma_channel = tls_dma_request(0, 0);
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_OFF;
DMA_SRCADDR_REG(sdio_spi_dma_channel) = (unsigned int)sdio_spi_dma_buf_addr;
DMA_DESTADDR_REG(sdio_spi_dma_channel) = (unsigned int)SDIO_HOST->DATA_BUF;
u32 bufsize = sdio_spi_dma_buf_size;
if(bufsize > 65532){
bufsize = 65532;
}
sdio_spi_dma_buf_size -= bufsize;
DMA_CTRL_REG(sdio_spi_dma_channel) = DMA_CTRL_SRC_ADDR_INC | DMA_CTRL_DATA_SIZE_WORD | (bufsize << 8);
DMA_MODE_REG(sdio_spi_dma_channel) = DMA_MODE_SEL_SDIOHOST | DMA_MODE_HARD_MODE;
tls_dma_irq_register(sdio_spi_dma_channel, (void (*))sdio_dma_callback, NULL, TLS_DMA_IRQ_TRANSFER_DONE);
DMA_CHNLCTRL_REG(sdio_spi_dma_channel) = DMA_CHNL_CTRL_CHNL_ON;
SDIO_HOST->BUF_CTL = 0xC20; //enable dma, write sd card
SDIO_HOST->MMC_INT_SRC |= 0x7ff; // clear all firstly
SDIO_HOST->MMC_BYTECNTL = bufsize;
SDIO_HOST->MMC_IO = 0x01;
}

View File

@ -1,19 +0,0 @@
#ifndef __SDIO_SPI_DRIVER_H__
#define __SDIO_SPI_DRIVER_H__
#include "wm_include.h"
void init_sdio_spi_mode();
void sdio_spi_put(u8 d);
void write_sdio_spi_dma(u32* data,u32 len);
void write_sdio_spi_dma_async(u32* data,u32 len);
void wait_sdio_spi_dma_ready();
#endif

View File

@ -49,8 +49,7 @@
#define LV_MEM_CUSTOM 0
#if LV_MEM_CUSTOM == 0
/*Size of the memory available for `lv_mem_alloc()` in bytes (>= 2kB)*/
//#define LV_MEM_SIZE (30 * 1024U) /*[bytes]*/
#define LV_MEM_SIZE (48 * 1024U)
#define LV_MEM_SIZE (30 * 1024U) /*[bytes]*/
/*Set an address for the memory pool instead of allocating it as a normal array. Can be in external SRAM too.*/
#define LV_MEM_ADR 0 /*0: unused*/
@ -220,7 +219,7 @@
*-----------*/
/*Enable the log module*/
#define LV_USE_LOG 0
#define LV_USE_LOG 1
#if LV_USE_LOG
/*How important log should be added:
@ -718,14 +717,14 @@
*==================*/
/*Enable the examples to be built with the library*/
#define LV_BUILD_EXAMPLES 1
#define LV_BUILD_EXAMPLES 0
/*===================
* DEMO USAGE
====================*/
/*Show some widget. It might be required to increase `LV_MEM_SIZE` */
#define LV_USE_DEMO_WIDGETS 1
#define LV_USE_DEMO_WIDGETS 0
#if LV_USE_DEMO_WIDGETS
#define LV_DEMO_WIDGETS_SLIDESHOW 0
#endif
@ -734,14 +733,14 @@
#define LV_USE_DEMO_KEYPAD_AND_ENCODER 0
/*Benchmark your system*/
#define LV_USE_DEMO_BENCHMARK 1
#define LV_USE_DEMO_BENCHMARK 0
#if LV_USE_DEMO_BENCHMARK
/*Use RGB565A8 images with 16 bit color depth instead of ARGB8565*/
#define LV_DEMO_BENCHMARK_RGB565A8 0
#endif
/*Stress test for LVGL*/
#define LV_USE_DEMO_STRESS 1
#define LV_USE_DEMO_STRESS 0
/*Music player demo*/
#define LV_USE_DEMO_MUSIC 0

View File

@ -173,7 +173,8 @@ void tls_dma_irq_clr(unsigned char ch, unsigned char flags)
* @return None
*
* @note None
*/void tls_dma_irq_register(unsigned char ch, void (*callback)(void *p), void *arg, unsigned char flags)
*/
void tls_dma_irq_register(unsigned char ch, void (*callback)(void *p), void *arg, unsigned char flags)
{
unsigned int mask;